如圖,正方形ABCD的對(duì)角線AC=6
2
,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),若點(diǎn)P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),則PE+PD的最小值為
6
6
分析:由于點(diǎn)B與D關(guān)于AC對(duì)稱,所以連接BD,與AC的交點(diǎn)即為P點(diǎn).此時(shí)PD+PE=BE最小,而BE是等邊△ABE的邊,BE=AB,由正方形ABCD的對(duì)角線為6
2
,可求出AB的長,從而得出結(jié)果.
解答:解:連接BD,與AC交于點(diǎn)F.
∵點(diǎn)B與D關(guān)于AC對(duì)稱,
∴PD=PB,
∴PD+PE=PB+PE=BE最小,
∵正方形ABCD的對(duì)角線為6
2

∴AB=6.
又∵△ABE是等邊三角形,
∴BE=AB=6.
故所求最小值為6.
故答案為:6.
點(diǎn)評(píng):此題主要考查了軸對(duì)稱--最短路線問題,難點(diǎn)主要是確定點(diǎn)P的位置.注意充分運(yùn)用正方形的性質(zhì):正方形的對(duì)角線互相垂直平分.再根據(jù)對(duì)稱性確定點(diǎn)P的位置即可.要靈活運(yùn)用對(duì)稱性解決此類問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案