【題目】已知,.點(diǎn)在上以的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)在上由點(diǎn)向點(diǎn)運(yùn)動(dòng),它們運(yùn)動(dòng)的時(shí)間為.
(1)如圖①,,,若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度相等,當(dāng)時(shí),與是否全等,請說明理由,并判斷此時(shí)線段和線段的位置關(guān)系;
(2)如圖②,將圖①中的“,”為改“”,其他條件不變.設(shè)點(diǎn)的運(yùn)動(dòng)速度為,是否存在實(shí)數(shù),使得與全等?若存在,求出相應(yīng)的、的值;若不存在,請說明理由.
【答案】(1)全等,PC與PQ垂直;(2)存在,或
【解析】
(1)利用SAS證得△ACP≌△BPQ,得出∠ACP=∠BPQ,進(jìn)一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出結(jié)論即可;
(2)由△ACP≌△BPQ,分兩種情況:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程組求得答案即可.
解:(1)當(dāng)t=1時(shí),AP=BQ=1,BP=AC=3,
又∠A=∠B=90°,
在△ACP和△BPQ中,
,
∴△ACP≌△BPQ(SAS).
∴∠ACP=∠BPQ,
∴∠APC+∠BPQ=∠APC+∠ACP=90°.
∴∠CPQ=90°,
即線段PC與線段PQ垂直.
(2)①若△ACP≌△BPQ,
則AC=BP,AP=BQ,
,
解得,
②若△ACP≌△BQP,
則AC=BQ,AP=BP,
,
解得,
綜上所述,存在或使得△ACP與△BPQ全等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由;
(3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓的直徑,O為半圓的圓心,AC是弦,取弧的中點(diǎn)D,過點(diǎn)D作DE⊥AC交AC的延長線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)當(dāng)AB=10,AC=5時(shí),求CE的長;
(3)連接CD,AB=10.當(dāng)=時(shí),求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=6,sinC=,以點(diǎn)A為圓心,AB長為半徑作弧交AC于M,分別以B、M為圓心,以大于BM長為半徑作弧,兩弧相交于點(diǎn)N,射線AN與BC相交于D,則AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,與都是等腰直角三角形,直角邊,在同一條直線上,點(diǎn)、分別是斜邊、的中點(diǎn),點(diǎn)為的中點(diǎn),連接,,,,.
(1)觀察猜想:
圖1中,與的數(shù)量關(guān)系是______,位置關(guān)系是______.
(2)探究證明:
將圖1中的繞著點(diǎn)順時(shí)針旋轉(zhuǎn)(),得到圖2,與、分別交于點(diǎn)、,請判斷(1)中的結(jié)論是否成立,若成立,請證明;若不成立,請說明理由.
(3)拓展延伸:
把繞點(diǎn)任意旋轉(zhuǎn),若,,請直接列式求出面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點(diǎn)E,H分別在AB,AC上,已知BC=40cm,AD=30cm,求這個(gè)正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)絡(luò)中,給出了△ABC和△DEF(網(wǎng)點(diǎn)為網(wǎng)格線的交點(diǎn))
(1)將△ABC向左平移兩個(gè)單位長度,再向上平移三個(gè)單位長度,畫出平移后的圖形△A1B2C3;
(2)畫出以點(diǎn)O為對稱中心,與△DEF成中心對稱的圖形△D2E2F2;
(3)求∠C+∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(-2,6),且與x軸交于點(diǎn)B,與正比例函數(shù)y=3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)是1.
(1)求此一次函數(shù)的解析式;
(2)請直接寫出不等式(k-3)x+b>0的解集;
(3)設(shè)一次函數(shù)y=kx+b的圖象與y軸交于點(diǎn)M,點(diǎn)N在坐標(biāo)軸上,當(dāng)△CMN是直角三角形時(shí),請直接寫出所有符合條件的點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,AO⊥BO,∠B=30°,點(diǎn)B在y=的圖象上,求過點(diǎn)A的反比例函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com