有兩條直線l1:y=ax+b和l2:y=cx+5.學生甲解出它們的交點為(3,-2);學生乙因把c抄錯了而解出它們的交點為,試寫出這兩條直線的解析式.
科目:初中數(shù)學 來源: 題型:
如圖,若正方形ABCD的四個頂點恰好分別在四條平行線l1、l2、l3、l4上,設這四條直線中相鄰兩條之間的距離依次為h1、h2、h3(h1>0,h2>0,h3>0).
(1)求證:h1=h3;
(2)現(xiàn)在平面直角坐標系內有四條直線l1、l2、l3、x軸,且l1∥l2∥l3∥x軸,若相鄰兩直線間的距離為1,2,1,點A(4,4)在l1,能否在l2、l3、x軸上各找一點B、C、D,使以這四個點為頂點的四邊形為正方形,若能,請直接寫出B、C、D的坐標;若不能,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年江蘇省無錫錫山區(qū)九年級下學期期中考試數(shù)學卷(帶解析) 題型:解答題
如圖,若正方形ABCD的四個頂點恰好分別在四條平行線l1、l2、l3、l4上,設這四條直線中相鄰兩條之間的距離依次為h1、h2、h3(h1>0,h2>0,h3>0).
(1)求證:h1=h3;
(2)現(xiàn)在平面直角坐標系內有四條直線l1、l2、l3、x軸,且l1∥l2∥l3∥x軸,若相鄰兩直線間的距離為1,2,1,點A(4,4)在l1,能否在l2、l3、x軸上各找一點B、C、D,使以這四個點為頂點的四邊形為正方形,若能,請直接寫出B、C、D的坐標;若不能,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆江蘇省無錫錫山區(qū)九年級下學期期中考試數(shù)學卷(解析版) 題型:解答題
如圖,若正方形ABCD的四個頂點恰好分別在四條平行線l1、l2、l3、l4上,設這四條直線中相鄰兩條之間的距離依次為h1、h2、h3(h1>0,h2>0,h3>0).
(1)求證:h1=h3;
(2)現(xiàn)在平面直角坐標系內有四條直線l1、l2、l3、x軸,且l1∥l2∥l3∥x軸,若相鄰兩直線間的距離為1,2,1,點A(4,4)在l1,能否在l2、l3、x軸上各找一點B、C、D,使以這四個點為頂點的四邊形為正方形,若能,請直接寫出B、C、D的坐標;若不能,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com