如圖,在矩形ABCD中,點(diǎn)O在對角線AC上,以O(shè)A的長為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE
(1)判斷直線CE與⊙O的位置關(guān)系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.
(1)直線CE與⊙O相切.…(1分)
理由:連接OE,
∵四邊形ABCD是矩形,
∴∠B=∠D=∠BAD=90°,BCAD,CD=AB,…(2分)
∴∠DCE+∠DEC=90°,∠ACB=∠DAC,
又∠DCE=∠ACB,
∴∠DEC+∠DAC=90°,
∵OE=OA,
∴∠OEA=∠DAC,
∴∠DEC+∠OEA=90°,
∴∠OEC=90°,
∴OE⊥EC,…(3分)
∵OE為圓O半徑,
∴直線CE與⊙O相切;…(4分)

(2)∵∠B=∠D,∠DCE=∠ACB,
∴△CDE△CBA,…(5分)
BC
DC
=
AB
DE
,…(6分)
又CD=AB=
2
,BC=2,
∴DE=1
根據(jù)勾股定理得EC=
3
,
又AC=
AB2+BC2
=
6
,…(7分)
設(shè)OA為x,則(
3
2+x2=(
6
-x)2
解得x=
6
4
,
∴⊙O的半徑為
6
4
.…(8分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PB為⊙O的切線,B為切點(diǎn),連PO交⊙O于點(diǎn)A,PA=2,PO=5,則PB的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分線,以AB上一點(diǎn)O為圓心,AD為弦作⊙O.
(1)在圖中作出⊙O;(不寫作法,保留作圖痕跡)
(2)求證:BC為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,菱形ABCD的頂點(diǎn)A、B在x軸上,點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)D在y軸的正半軸上,∠BAD=60°,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求線段AD所在直線的函數(shù)表達(dá)式;
(2)動點(diǎn)P從點(diǎn)A出發(fā),以每秒1個單位長度的速度,按照A?D?C?B?A的順序在菱形的邊上勻速運(yùn)動一周,設(shè)運(yùn)動時間為t秒、求t為何值時,以點(diǎn)P為圓心、以1為半徑的圓與對角線AC相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知PA,PB分別切⊙O于A、B,CD切⊙O于E,PO=13,AO=5,則△PCD周長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙E的直徑,C是直線AB上一點(diǎn),CD切⊙E于點(diǎn)D,且∠A=25°,則∠C=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,點(diǎn)P在AB的延長線上,弦CE交AB于點(diǎn)D.連接OE、AC,已知∠POE=2∠CAB,∠P=∠E.
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=20D,PB=9,求⊙O的半徑及tan∠P的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA為⊙O直徑,過弧AC的中點(diǎn)H作PC的垂線交PC的延長線于點(diǎn)B,若HB=6cm,BC=4cm,求⊙O直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PA是⊙O的直徑,PC是⊙O的弦,過AC弧的中點(diǎn)H作PC的垂線交PC的延長線于點(diǎn)B.若HB=6cm,BC=4cm,則⊙O的直徑為( 。
A.2
13
cm
B.3
17
cm
C.13cmD.6
13
cm

查看答案和解析>>

同步練習(xí)冊答案