【題目】已知四邊形ABCD是平行四邊形,對角線AC、BD交于點O,E是BC的中點,以下說法錯誤的是( 。

A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE

【答案】D

【解析】由平行四邊形的性質(zhì)和三角形中位線定理得出選項A、B、C正確;由OB≠OC,得出∠OBE≠∠OCE,選項D錯誤;即可得出結(jié)論.

解:∵四邊形ABCD是平行四邊形,

∴OA=OC,OB=OD,AB∥DC,

又∵點E是BC的中點,

∴OE是△BCD的中位線,

∴OE=DC,OE∥DC,

∴OE∥AB,

∴∠BOE=∠OBA,

∴選項A、B、C正確;

∵OB≠OC,

∴∠OBE≠∠OCE,

∴選項D錯誤;

故選D.

“點睛”此題考查了平行四邊形的性質(zhì),還考查了三角形中位線定理,解決問題的方法是采用排除法解答

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與點A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,ADBE交于點OADBC交于點P,BECD交于點Q,連接PQ.以下五個結(jié)論:①AD=BE;②PQ∥AE③AP=BQ;④DE=DP⑤∠AOB=60°

恒成立的結(jié)論有 .(把你認為正確的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的圖象過M(1,3),N(-2,12)兩點.

(1)求函數(shù)的解析式;

(2)試判斷點P(2a,-6a+8)是否在函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學本學年每個單元的測驗成績?nèi)缦拢▎挝唬悍郑?/span>

甲:98,100,100,90,96,91,89,99,100,100,93

乙:98,99,96,94,95,92,92,98,96,99,97

(1)、他們的平均成績分別是多少?

(2)、甲、乙的11次單元測驗成績的標準差分別是多少?

(3)、這兩位同學的成績各有什么特點?

(4)、現(xiàn)要從中選出一人參加“希望杯”競賽,歷屆比賽成績表明,平時成績達到98分以上才可能進入決賽,你認為應(yīng)選誰參加這項競賽,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一玩具工廠用于生產(chǎn)的全部勞力為450個工時,原料為400個單位.生產(chǎn)一個小熊要使用15個工時、20個單位的原料,售價為80元;生產(chǎn)一個小貓要使用10個工時、5個單位的原料,售價為45元.在勞力和原料的限制下合理安排生產(chǎn)小熊、小貓的個數(shù),可以使小熊和小貓的總售價盡可能高.請用你所學過的數(shù)學知識分析,總售價是否可能達到2200元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校260名學生參加植樹活動,要求每人植4﹣7棵,活動結(jié)束后隨機抽查了20名學生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵,將各類的人數(shù)繪制成扇形圖(如圖(1))和條形圖(如圖(2)),經(jīng)確認扇形圖是正確的,而條形圖尚有一處錯誤. 回答下列問題:

(1)寫出條形圖中存在的錯誤,并說明理由;
(2)寫出這20名學生每人植樹量的眾數(shù)、中位數(shù);
(3)在求這20名學生每人植樹量的平均數(shù)時,小宇是這樣分析的: 第一步:求平均數(shù)的公式是 = ;
第二步:在該問題中,n=4,x1=4,x2=5,x3=6,x4=7;
第三步: = =5.5(份)
①小宇的分析是從哪一步開始出現(xiàn)錯誤的?
②請你幫他計算出正確的平均數(shù),并估計這260名學生共植樹多少棵.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點O為AB的中點,連接DO并延長到點E,使OE=OD,連接AE,BE.

(1)求證:四邊形AEBD是矩形;

(2)當△ABC滿足什么條件時,矩形AEBD是正方形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊ABC的邊長為6,DAB上一點DEBC于點E,EFAC于點F,連接DFDEF也是等邊三角形AD的長

查看答案和解析>>

同步練習冊答案