【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC于點(diǎn)F,連接DF,分析下列五個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF,其中正確的結(jié)論有________個(gè)。

【答案】4

【解析】試題解析:過(guò)DDM∥BEACN

四邊形ABCD是矩形,

∴AD∥BC,∠ABC=90°AD=BC,

∵BE⊥AC于點(diǎn)F,

∴∠EAC=∠ACB,∠ABC=∠AFE=90°,

∴△AEF∽△CAB,故正確;

∵AD∥BC,

∴△AEF∽△CBF,

∵AE=AD=BC,

,

∴CF=2AF,故正確,

∵DE∥BM,BE∥DM,

四邊形BMDE是平行四邊形,

∴BM=DE=BC,

∴BM=CM,

∴CN=NF,

∵BE⊥AC于點(diǎn)FDM∥BE,

∴DN⊥CF,

∴DF=DC,故正確;

∵tan∠CAD=,

CDAD的大小不知道,

∴tan∠CAD的值無(wú)法判斷,故錯(cuò)誤;

∵△AEF∽△CBF,

,

∴SAEF=SABFSABF=S矩形ABCD

∴SAEF=S矩形ABCD,

∵S四邊形CDEF=SACD-SAEF=S矩形ABCD-S矩形ABCD=S矩形ABCD,

∴S四邊形CDEF=SABF,故正確;

故有4個(gè)正確

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙ORtABC的斜邊AB相切于點(diǎn)D,與直角邊AC相交于EF兩點(diǎn),連結(jié)DE,已知∠B=30°,O的半徑為12,弧DE的長(zhǎng)度為

1)求證:DEBC;

2)若AF=CE,求線段BC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD內(nèi)兩點(diǎn)M、N,滿足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四邊形BMDN的面積是菱形ABCD面積的,則cosA= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:

(1)方程ax2+bx+c=0的兩個(gè)根為____________;

(2)不等式ax2+bx+c>0的解集為________;

(3)yx的增大而減小的自變量x的取值范圍為________;

(4)若方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,k的取值范圍為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,0),等邊三角形AOC經(jīng)過(guò)平移或軸對(duì)稱或旋轉(zhuǎn)都可以得到OBD

(1)AOC沿x軸向右平移得到OBD,則平移的距離是 個(gè)單位長(zhǎng)度;

(2)AOCBOD關(guān)于直線對(duì)稱,則對(duì)稱軸是

3AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)可以得到DOB,則旋轉(zhuǎn)角度是 ,在此旋轉(zhuǎn)過(guò)程中,AOC掃過(guò)的圖形的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),點(diǎn)E為⊙G上一動(dòng)點(diǎn),CFAEF.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng)為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四張小卡片上分別寫有數(shù)字1、2、3、4,它們除數(shù)字外沒(méi)有任何區(qū)別,現(xiàn)將它們放在盒子里攪勻.

1)隨機(jī)地從盒子里抽取一張,求抽到數(shù)字3的概率;

2)隨機(jī)地從盒子里抽取一張,將數(shù)字記為x,不放回再抽取第二張,將數(shù)字記為y,請(qǐng)你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果,并求出點(diǎn)(x,y)在函數(shù)圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家推行節(jié)能減排,低碳經(jīng)濟(jì)政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求.若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬(wàn)元,每套產(chǎn)品的售價(jià)不低于80萬(wàn)元,已知這種設(shè)備的月產(chǎn)量x(套)與每套的售價(jià)y(萬(wàn)元)之間滿足關(guān)系式y=150﹣2x,月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬(wàn)元)存在如圖所示的函數(shù)關(guān)系.

(1)直接寫出y2x之間的函數(shù)關(guān)系式;

(2)求月產(chǎn)量x的范圍;

(3)當(dāng)月產(chǎn)量x(套)為多少時(shí),這種設(shè)備的利潤(rùn)W(萬(wàn)元)最大?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案