(2009•南充)如圖,ABCD是正方形,點(diǎn)G是BC上的任意一點(diǎn),DE⊥AG于E,BF∥DE,交AG于F.
求證:AF=BF+EF.

【答案】分析:因?yàn)锳F=AE+EF,則可以通過證明△ABF≌△DAE,從而得到AE=BF,便得到了AF=BF+EF.
解答:證明:∵ABCD是正方形,
∴AD=AB,∠BAD=90°(1分)
∵DE⊥AG,
∴∠DEG=∠AED=90°
∴∠ADE+∠DAE=90°
又∵∠BAF+∠DAE=∠BAD=90°,
∴∠ADE=∠BAF.(2分)
∵BF∥DE,
∴∠AFB=∠DEG=∠AED.(3分)
在△ABF與△DAE中,
∴△ABF≌△DAE(AAS).(4分)
∴BF=AE.(5分)
∵AF=AE+EF,
∴AF=BF+EF.(6分)
點(diǎn)評:此題主要考查學(xué)生對正方形的性質(zhì)及全等三角形的判定的掌握情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2009•南充)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)A(3,3).
(1)求正比例函數(shù)和反比例函數(shù)的解析式;
(2)把直線OA向下平移后與反比例函數(shù)的圖象交于點(diǎn)B(6,m),求m的值和這個(gè)一次函數(shù)的解析式;
(3)第(2)問中的一次函數(shù)的圖象與x軸、y軸分別交于C、D,求過A、B、D三點(diǎn)的二次函數(shù)的解析式;
(4)在第(3)問的條件下,二次函數(shù)在第一象限的圖象上是否存在點(diǎn)E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)考前30天沖刺得分專練6:函數(shù)、一次函數(shù)(解析版) 題型:解答題

(2009•南充)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)A(3,3).
(1)求正比例函數(shù)和反比例函數(shù)的解析式;
(2)把直線OA向下平移后與反比例函數(shù)的圖象交于點(diǎn)B(6,m),求m的值和這個(gè)一次函數(shù)的解析式;
(3)第(2)問中的一次函數(shù)的圖象與x軸、y軸分別交于C、D,求過A、B、D三點(diǎn)的二次函數(shù)的解析式;
(4)在第(3)問的條件下,二次函數(shù)在第一象限的圖象上是否存在點(diǎn)E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省連云港市贛榆縣實(shí)驗(yàn)中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•南充)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)A(3,3).
(1)求正比例函數(shù)和反比例函數(shù)的解析式;
(2)把直線OA向下平移后與反比例函數(shù)的圖象交于點(diǎn)B(6,m),求m的值和這個(gè)一次函數(shù)的解析式;
(3)第(2)問中的一次函數(shù)的圖象與x軸、y軸分別交于C、D,求過A、B、D三點(diǎn)的二次函數(shù)的解析式;
(4)在第(3)問的條件下,二次函數(shù)在第一象限的圖象上是否存在點(diǎn)E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年四川省南充市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•南充)如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)A(3,3).
(1)求正比例函數(shù)和反比例函數(shù)的解析式;
(2)把直線OA向下平移后與反比例函數(shù)的圖象交于點(diǎn)B(6,m),求m的值和這個(gè)一次函數(shù)的解析式;
(3)第(2)問中的一次函數(shù)的圖象與x軸、y軸分別交于C、D,求過A、B、D三點(diǎn)的二次函數(shù)的解析式;
(4)在第(3)問的條件下,二次函數(shù)在第一象限的圖象上是否存在點(diǎn)E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年山東省青島市中學(xué)中考專題訓(xùn)練《圓》(解析版) 題型:解答題

(2009•南充)如圖,半圓的直徑AB=10,點(diǎn)C在半圓上,BC=6.
(1)求弦AC的長;
(2)若P為AB的中點(diǎn),PE⊥AB交AC于點(diǎn)E,求PE的長.

查看答案和解析>>

同步練習(xí)冊答案