【題目】如圖,點(diǎn)A是雙曲線y=上一點(diǎn),過A作AB∥x軸,交直線y=﹣x于點(diǎn)B,點(diǎn)D是x軸上一點(diǎn),連接BD交雙曲線于點(diǎn)C,連接AD,若BC:CD=3:2,△ABD的面積為,tan∠ABD=,則k的值為( 。
A. ﹣2 B. ﹣3 C. ﹣ D.
【答案】A
【解析】
如圖作BH⊥OD于H.延長(zhǎng)BA交y軸于E.由tan∠ABD=tan∠BDH=,設(shè)DH=5m,BH=9m,則BH=BE=9m,OD=4m,推出C(-6m,m),推出A(-m,9m),由△ABD的面積為,推出m×9m=,可得m2=,推出k=-6m×m=-2;
如圖作BH⊥OD于H.延長(zhǎng)BA交y軸于E.
∵AB∥DH,
∴∠ABD=∠BDH,
∴tan∠ABD=tan∠BDH=,設(shè)DH=5m,BH=9m,則BH=BE=9m,OD=4m,
∴C(-6m,m),
∴A(-m,9m),
∵△ABD的面積為,
∴m×9m=,
∴m2=,
∴k=-6m×m=-2,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為24的等邊三角形ABC中,M是高CH所在直線上的一個(gè)動(dòng)點(diǎn),連結(jié)MB,將線段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連結(jié)HN.則在點(diǎn)M運(yùn)動(dòng)過程中,線段HN長(zhǎng)度的最小值是( 。
A. 12B. 6C. 3D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系的原點(diǎn)是正方形的中心,頂點(diǎn),的坐標(biāo)分別為、,把正方形繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)得到正方形,則正方形與正方形重疊部分形成的正八邊形的邊長(zhǎng)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=30°.過點(diǎn)B作DB⊥AB交CA的延長(zhǎng)線于點(diǎn)D,過點(diǎn)C作CE⊥AC交BA的延長(zhǎng)線于點(diǎn)E,點(diǎn)F為AE的中點(diǎn),連接CF.
(1)求證:△DBA≌△ECA;
(2)△CAF是等邊三角形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某海域有、、三艘船正在捕魚作業(yè),船突然出現(xiàn)故障,向、兩船發(fā)出緊急求救信號(hào),此時(shí)船位于船的北偏西方向,距船海里的海域,船位于船的北偏東方向,同時(shí)又位于船的北偏東方向.
(1)求的度數(shù);
船以每小時(shí)海里的速度前去救援,問多長(zhǎng)時(shí)間能到出事地點(diǎn).(結(jié)果精確到小時(shí)).(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于a、b定義兩種新運(yùn)算“*”和“⊕”:a*b=a+kb,a⊕b=ka+b(其中k為常數(shù),且k≠0),若平面直角坐標(biāo)系xOy中的點(diǎn)P(a,b),有點(diǎn)P′的坐標(biāo)為(a*b,a⊕b)與之相對(duì)應(yīng),則稱點(diǎn)P′為點(diǎn)P的“k衍生點(diǎn)”.例如:P(1,4)的“2衍生點(diǎn)”為P′(1+2×4,2×1+4),即P′(9,6).
(1)點(diǎn)P(﹣1,6)的“2衍生點(diǎn)”P′的坐標(biāo)為 ;
(2)若點(diǎn)P的“5衍生點(diǎn)”P′的坐標(biāo)為(﹣3,9),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課上老師呈現(xiàn)一個(gè)問題:
下面提供三種思路:
思路一:過點(diǎn)F作MN∥CD(如圖甲);
思路二:過P作PN∥EF,交AB于點(diǎn)N;
思路三:過O作ON∥FG,交CD于點(diǎn)N.
解答下列問題:
(1)根據(jù)思路一(圖甲),可求得∠EFG的度數(shù)為 ;
(2)根據(jù)思路二、三分別在圖乙和圖丙中作出符合要求的輔助線;
(3)請(qǐng)你從思路二、思路三中任選其中一種,寫出求∠EFG度數(shù)的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在電線桿上的處引拉線、固定電線桿,拉線和地面所成的角,在離電線桿米的處安置高為米的測(cè)角儀,在處測(cè)得電線桿上處的仰角為,求拉線的長(zhǎng)(結(jié)構(gòu)保留一位小數(shù),參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在線段BC上,若BC=DE,AC=DC,AB=EC,且∠ACE=180°—∠ABC—2x°,則下列角中,大小為x°的角是
A.∠EFCB.∠ABCC.∠FDCD.∠DFC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com