【題目】有兩張完全重合的矩形紙片,小亮同學(xué)將其中一張繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連接BD、MF,若此時(shí)他測得BD=8cm,∠ADB=30度.請回答下列問題:(1)試探究線段BD與線段MF的關(guān)系,并簡要說明理由;

(2)小紅同學(xué)用剪刀將△BCD與△MEF剪去,與小亮同學(xué)繼續(xù)探究.他們將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得△AB1D1,AD1FM于點(diǎn)K(如圖2),設(shè)旋轉(zhuǎn)角為β(0°<β<90°),當(dāng)△AFK為等腰三角形時(shí),請直接寫出旋轉(zhuǎn)角β的度數(shù);

(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2AD交于點(diǎn)P,A2M2BD交于點(diǎn)N,當(dāng)NP∥AB時(shí),求平移的距離是多少?

【答案】1BD=MF,BD⊥MF.理由見解析;

2β的度數(shù)為60°15°

3)平移的距離是(6﹣2cm

【解析】

試題(1)有兩張完全重合的矩形紙片,小亮同學(xué)將其中一張繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),得BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM=30°,進(jìn)而可得∠DNM的大。

2)根據(jù)旋轉(zhuǎn)的性質(zhì)得出結(jié)論.

3)求平移的距離是A2A的長度.在矩形PNA2A中,A2A=PN,只要求出PN的長度就行.用△DPN∽△DAB得出:,解得A2A的大。

試題解析:(1BD=MF,BD⊥MF.

延長FMBD于點(diǎn)N,

由題意得:△BAD≌△MAF

∴BD=MF,∠ADB=∠AFM.

∵∠DMN=∠AMF

∴∠ADB+∠DMN=∠AFM+∠AMF=90°,

∴∠DNM=90°

∴BD⊥MF;

2)當(dāng)AK=FK時(shí),∠KAF=∠F=30°

∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,

β=60°;

當(dāng)AF=FK時(shí),∠FAK==75°

∴∠BAB1=90°﹣∠FAK=15°,

β=15°

∴β的度數(shù)為60°15°;

3)由題意得矩形PNA2A.設(shè)A2A=x,則PN=x

Rt△A2M2F2中,∵F2M2=FM=8

∴A2M2=4,A2F2=4∴AF2=4﹣x

∵∠PAF2=90°,∠PF2A=30°

∴AP=AF2tan30°=4﹣x

∴PD=AD﹣AP=4﹣4+x

∵NP∥AB,

∴∠DNP=∠B

∵∠D=∠D

∴△DPN∽△DAB.

.

,

解得x=6﹣2.

A2A=6﹣2

答:平移的距離是(6﹣2cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,若點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)相等,則稱點(diǎn)P為等值點(diǎn).例如點(diǎn)

(1,1),(-2,-2),(,),…,都是等值點(diǎn).已知二次函數(shù)

圖象上有且只有一個(gè)等值點(diǎn) ,且當(dāng)mx≤3時(shí),函數(shù) 的最小值為-9,最大值為-1,則m的取值范圍是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)E是邊AC上一點(diǎn),線段BE垂直于∠BAC的平分線于點(diǎn)D,點(diǎn)M為邊BC的中點(diǎn),連接DM

(1)求證: DMCE;

(2)AD6,BD8,DM2,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有6個(gè)質(zhì)地和大小均相同的球,每個(gè)球只標(biāo)有一個(gè)數(shù)字,將標(biāo)有3,4,5的三個(gè)球放入甲箱中,標(biāo)有4,5,6的三個(gè)球放入乙箱中.

(1)小宇從甲箱中隨機(jī)模出一個(gè)球,求摸出標(biāo)有數(shù)字是3的球的概率;

(2)小宇從甲箱中、小靜從乙箱中各自隨機(jī)摸出一個(gè)球,若小宇所摸球上的數(shù)字比小靜所摸球上的數(shù)字大1,則稱小宇略勝一籌.請你用列表法(或畫樹狀圖)求小宇略勝一籌的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別交于兩點(diǎn),的中點(diǎn),上一點(diǎn),四邊形是菱形,則的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形、、、…按如圖所示的方式放置.點(diǎn)、、、…和點(diǎn)、、…分別在直線軸上,則點(diǎn)的坐標(biāo)是__________.(為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準(zhǔn)備在一個(gè)廣場上種植甲、乙兩種花卉.經(jīng)市場調(diào)查,甲種花卉的種植費(fèi)用(元)與種植面積之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為每平方米100.

(1)直接寫出當(dāng)時(shí),的函數(shù)關(guān)系式;

(2)廣場上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植費(fèi)用最少?最少總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體的長為15,寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5,一只螞蟻如果要沿著長方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD8,AB4,將此矩形折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,連接BEDF,以B為原點(diǎn)建立平面直角坐標(biāo)系,使BC、BA邊分別在x軸和y軸的正半軸上.

1)試判斷四邊形BFDE的形狀,并說明理由;

2)求直線EF的解析式.

查看答案和解析>>

同步練習(xí)冊答案