【題目】若直線y=3x+m經(jīng)過(guò)第一、三、四象限,則拋物線y=(x-m) +1的頂點(diǎn)在第象限( )
A.一
B.二
C.三
D.四
【答案】B
【解析】 直線 經(jīng)過(guò)第一、三、四象限,
<0,
又 拋物線 是二次函數(shù),其頂點(diǎn)坐標(biāo)為(m,1),
又 m<0,
∴ 拋物線的頂點(diǎn)在第二象限.
【考點(diǎn)精析】利用一次函數(shù)的性質(zhì)和一次函數(shù)的圖象和性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減;一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,線段AB=8cm,點(diǎn)C為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)C不與點(diǎn)A、B重合),D、E分別是線段AC和線段BC的中點(diǎn).
(1)求DE的長(zhǎng);
(2)知識(shí)遷移:如圖②,已知∠AOB=,射線OC在∠AOB的內(nèi)部,若OD、OE分別平分∠AOC和∠BOC,求∠DOE的度數(shù)(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2,∠C=∠D,那么DF∥AC,請(qǐng)完成它成立的理由
∵∠1=∠2,∠2=∠3 ,∠1=∠4( )
∴∠3=∠4( )
∴________∥_______ ( )
∴∠C=∠ABD( )
∵∠C=∠D( )
∴∠D=∠ABD( )
∴DF∥AC( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C,D是AB的垂直平分線上兩點(diǎn),延長(zhǎng)AC,DB交于點(diǎn)E,AF∥BC交DE于點(diǎn)F.
求證:(1)AB是∠CAF的角平分線;
(2)∠FAD = ∠E.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC和△A1B1C1關(guān)于x軸成軸對(duì)稱(chēng),畫(huà)出△A1B1C1
(2)點(diǎn)C1的坐標(biāo)為_(kāi)________,△ABC的面積為_(kāi)_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)方形ABCD中,AD=10cm,AB=6cm,點(diǎn)M在邊CD上,由C往D運(yùn)動(dòng),速度為1cm/s,運(yùn)動(dòng)時(shí)間為t秒,將△ADM沿著AM翻折至△ADM,點(diǎn)D對(duì)應(yīng)點(diǎn)為D,AD所在直線與邊BC交于點(diǎn)P.
(1)如圖1,當(dāng)t=0時(shí),求證:PA=PC;
(2)如圖2,當(dāng)t為何值時(shí),點(diǎn)D恰好落在邊BC上;
(3)如圖3,當(dāng)t=3時(shí),求CP的長(zhǎng).
(
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB,于點(diǎn)E
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:拋物線 與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.點(diǎn)P為線段BC上一點(diǎn),過(guò)點(diǎn)P作直線ι⊥x軸于點(diǎn)F,交拋物線 于點(diǎn)E.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí),求線段PE長(zhǎng)的最大值;
(3)當(dāng)PE取最大值時(shí),把拋物線 向右平移得到拋物線 ,拋物線 與線段BE交于點(diǎn)M,若直線CM把△BCE的面積分為1:2兩部分,則拋物線 應(yīng)向右平移幾個(gè)單位長(zhǎng)度可得到拋物線 ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:P、Q分別是兩條線段a和b上任意一點(diǎn),線段PQ的長(zhǎng)度的最小值叫做線段a與線段b的距離.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標(biāo)系中四點(diǎn).
(1)根據(jù)上述定義,當(dāng)m=2,n=2時(shí),如圖1,線段BC與線段OA的距離是;當(dāng)m=5,n=2時(shí),如圖2,線段BC與線段OA的距離為;
(2)如圖3,若點(diǎn)B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.
(3)當(dāng)m的值變化時(shí),動(dòng)線段BC與線段OA的距離始終為2,線段BC的中點(diǎn)為M,
①求出點(diǎn)M隨線段BC運(yùn)動(dòng)所圍成的封閉圖形的周長(zhǎng);
②點(diǎn)D的坐標(biāo)為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值使以A、M、H為頂點(diǎn)的三角形與△AOD相似?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com