已知:如圖1,△OAB是邊長為2的等邊三角形,OA在x軸上,點B在第一象限內(nèi);△OCA是一個等腰三角形,OC=AC,頂點C在第四象限,∠C=120°.現(xiàn)有兩動點P、Q分別從A、O兩點同時出發(fā),點Q以每秒1個單位的速度沿OC向點C運動,點P以每秒3個單位的速度沿A→O→B運動,當其中一個點到達終點時,另一個點也隨即停止.
(1)求在運動過程中形成的△OPQ面積S與運動時間t之間的函數(shù)關系,并寫出自變量t的取值范圍;
(2)在OA上(點O、A除外)存在點D,使得△OCD為等腰三角形,請直接寫出所有符合條件的點D的坐標;
(3)如圖2,現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點M、N,連接MN.將∠MCN繞著C點旋轉(0°<旋轉角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過程中,△BMN的周長是否發(fā)生變化?若沒有變化,請求出其周長;若發(fā)生變化,請說明理由.
(1)(),()
(2)或
(3)4
【解析】
試題分析:解:(1)過點C作CD⊥OA于點D.
∵OC=AC,∠ACO=120°,∴∠AOC=∠OAC=30°.
∵,, ∴.
在Rt中,
①當時,,,;
過點作于點.
在Rt中,∵,∴,
∴.
即 .
②當時,
,.
∵,,∴.
∴.
即.
故當時,,當時,
(2)因為點C(1,-),所以OC=,假設OC=OD,則點D的坐標為
假設OD=DC,則點D的坐標為
(3)的周長不發(fā)生變化.
延長至點,使,連結.
∵,∴≌.
∴,
∴.
∴. 又∵.
∴≌.∴
∴.
∴的周長不變,其周長為4
考點:幾何圖形與一次函數(shù)的結合
點評:該題較為復雜,是大題中的常考題,主要考查學生分析直角坐標系幾何圖形與函數(shù)之間的聯(lián)系,圖形點的坐標表示記得所在空間的符號。
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
有這樣一道習題:已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,R是OA的延長線上一點,且RP=RQ.說明:RQ為⊙O的切線. (無須證明)
請?zhí)骄肯铝凶兓?/p>
變化一:交換題設與結論.
如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,過Q點作⊙O的切線交OA的延長線于R.說明:RP=RQ.(要證明)
變化二:運動探求.
(1)如圖2,若OA向上平移,變化一中的結論還成立嗎?(只需交待判斷) 答:_________.
(2)如圖3,如果P在OA的延長線上時,BP交⊙O于Q,過點Q作⊙O的切線交OA的延長線于R,變化一中的結論還成立嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年江蘇省蘇州市九年級10月月考數(shù)學卷 題型:解答題
(本題滿分12分)有這樣一道習題:已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,R是OA的延長線上一點,且RP=RQ.說明:RQ為⊙O的切線. (無須證明)
請?zhí)骄肯铝凶兓?/p>
變化一:交換題設與結論.
如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,過Q點作⊙O的切線交OA的延長線于R.說明:RP=RQ.(要證明)
變化二:運動探求.
(1)如圖2,若OA向上平移,變化一中的結論還成立嗎?(只需交待判斷) 答:_________.
(2)如圖3,如果P在OA的延長線上時,BP交⊙O于Q,過點Q作⊙O的切線交OA的延長線于R,變化一中的結論還成立嗎?為什么? 來]
查看答案和解析>>
科目:初中數(shù)學 來源:2011年江蘇省蘇州市九年級上學期月考數(shù)學卷 題型:解答題
有這樣一道習題:已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,R是OA的延長線上一點,且RP=RQ.說明:RQ為⊙O的切線. (無須證明)
請?zhí)骄肯铝凶兓?/p>
變化一:交換題設與結論.
如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(不與O、A重合),BP的延長線交⊙O于Q,過Q點作⊙O的切線交OA的延長線于R.說明:RP=RQ.(要證明)
變化二:運動探求.
(1)如圖2,若OA向上平移,變化一中的結論還成立嗎?(只需交待判斷) 答:_________.
(2)如圖3,如果P在OA的延長線上時,BP交⊙O于Q,過點Q作⊙O的切線交OA的延長線于R,變化一中的結論還成立嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com