(2013•朝陽區(qū)一模)已知:一次函數(shù)y=x+2與反比例函數(shù)y=
kx
相交于A、B兩點且A點的縱坐標為4.
(1)求反比例函數(shù)的解析式;
(2)求△AOB的面積.
分析:(1)將A點縱坐標代入y=x+2,求出A點橫坐標,再將A點坐標代入y=
k
x
,求出k的值即可;
(2)將△AOB的面積轉(zhuǎn)化為S△DOB和S△AOD,再分別計算即可.
解答:解:(1)∵A點的縱坐標為4,
∴x+2=4,x=2,A(2,4).
將A(2,4)代入y=
k
x
得,k=xy=2×4=8,
函數(shù)解析式為y=
8
x

將y=x+2與y=
8
x
組成方程組得
y=x+2
y=
8
x
,
解得,
x=2
y=4
x=-4
y=-2
,
故A(2,4),B(-4,-2).
(2)∵y=x+2與y軸交于(0,2)點,
∴D(0,2).
S△AOB=S△DOB+S△AOD=
1
2
×2×4+
1
2
×2×2=4+2=6.
點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題,將兩函數(shù)解析式組成方程組是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•朝陽區(qū)一模)如圖,矩形ABCD的兩條對角線相交于點O,∠BOC=120°,AB=3,一動點P以1cm/s的速度沿折線OB-BA運動,那么點P的運動時間x(s)與點C、O、P圍成的三角形的面積y之間的函數(shù)圖象為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•朝陽區(qū)一模)如圖,AB為⊙O的直徑,BC是弦,OE⊥BC,垂足為F,且與⊙O相交于點E,連接CE、AE,延長OE到點D,使∠ODB=∠AEC.
(1)求證:BD是⊙O的切線;
(2)若cosD=
45
,BC=8,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•朝陽區(qū)一模)如圖,拋物線y=-
3
4
x2+c與x軸分別交于點A、B,直線y=-
3
4
x+
3
2
過點B,與y軸交于點E,并與拋物線y=-
3
4
x2+c相交于點C.
(1)求拋物線y=-
3
4
x2+c的解析式;
(2)直接寫出點C的坐標;
(3)若點M在線段AB上以每秒1個單位長度的速度從點A向點B運動(不與點A、B重合),同時,點N在射線BC上以每秒2個單位長度的速度從點B向點C運動.設點M的運動時間為t秒,請寫出△MNB的面積S與t的函數(shù)關系式,并求出點M運動多少時間時,△MNB的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•朝陽區(qū)一模)在矩形ABCD中,AD=4,M是AD的中點,點E是線段AB上一動點,連接EM并延長交線段CD的延長線于點F.
(1)如圖1,求證:ME=MF;
(2)如圖2,點G是線段BC上一點,連接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,求AB的長;
(3)如圖3,點G是線段BC延長線上一點,連接GE、GF、GM,若△EGF是等邊三角形,則AB=
2
3
2
3

查看答案和解析>>

同步練習冊答案