已知四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點,當(dāng)對角線AC、BD滿足條件    時,四邊形EFGH是菱形.
【答案】分析:根據(jù)三角形的中位線定理和菱形的判定,可得順次連接對角線相等的四邊形各邊中點所得四邊形是菱形,故可添加:AC=BD.
解答:解:如圖,
AC=BD,E、F、G、H分別是線段AB、BC、CD、AD的中點,
則EH、FG分別是△ABD、△BCD的中位線,EF、HG分別是△ACD、△ABC的中位線,根據(jù)三角形的中位線的性質(zhì)知,EH=FG=BD,EF=HG=AC,
∴當(dāng)AC=BD,有EH=FG=HG=EF,則四邊形EFGH是菱形.
故添加:AC=BD.
點評:本題是開放題,可以針對各種特殊的平行四邊形的判定方法,給出條件,再證明結(jié)論.答案可以有多種,主要條件明確,說法有理即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四邊形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
45

求S△ABD:S△BCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、已知四邊形ABCD中,AB=BC=CD,∠B=90°,根據(jù)這樣的條件,能判定這個四邊形是正方形嗎?若能,請你指出判定的依據(jù);若不能,請舉出一個反例(即畫出一個四邊形滿足上述條件,但不是正方形),并指出若再添加一個什么條件,就可以判定這個四邊形是正方形,你能指出幾種情況嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD中,給出下列四個論斷:(1)AB∥CD,(2)AB=CD,(3)AD=BC,(4)AD∥BC.以其中兩個論斷作為條件,余下兩個作為結(jié)論,可以構(gòu)成一些命題.在這些命題中,正確命題的個數(shù)有( 。
A、2個B、3個C、4個D、6個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

選做題:(A)已知四邊形ABCD中,AD∥BC,對角線AC、BD交于點O,∠OBC=∠OCB,并且
 
,求證:四邊形ABCD是
 
形.(要求在已知條件中的橫線上補上一個條件
 
,在求證中的橫線上添上該四邊形的形狀,然后畫出圖形,予以證明,證明時要用上所有條件)
(B)某市市委、市府2001年提出“工業(yè)立市”的口號,積極招商引資,財政收入穩(wěn)步增長,各年度財政收入如下表:
年 份 2001 2002 2003 2004
財政收入
單位(億元)
10 10.5 12 14.5
按這種增長趨勢,請你算一算2006年該市的財政收入是多少億元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD中,E、F、G、H分別為AB、BC、CD、DA的中點,
①求證:四邊形EFGH是平行四邊形.
②探索下列問題,并選擇一個進(jìn)行證明.
a.原四邊形ABCD的對角線AC、BD滿足
AC⊥BD
AC⊥BD
時,四邊形EFGH是矩形.
b.原四邊形ABCD的對角線AC、BD滿足
AC=BD
AC=BD
時,四邊形EFGH是菱形.
c.原四邊形ABCD的對角線AC、BD滿足
AC⊥BD且AC=BD
AC⊥BD且AC=BD
時,四邊形EFGH是正方形.

查看答案和解析>>

同步練習(xí)冊答案