【題目】如圖,在中,,,,點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿線段運(yùn)動(dòng),到點(diǎn)停止.當(dāng)點(diǎn)不與的頂點(diǎn)重合時(shí),過點(diǎn)作其所在直角邊的垂線交于點(diǎn),再以為斜邊作等腰直角三角形,且點(diǎn)的另一條直角邊始終在同側(cè),設(shè)重疊部分圖形的面積為(平方單位),點(diǎn)的運(yùn)動(dòng)時(shí)間為(秒).

的長(zhǎng)(用含的代數(shù)式表示);

當(dāng)為何值時(shí)點(diǎn)恰好落在上?

當(dāng)點(diǎn)邊上運(yùn)動(dòng)時(shí),求之間的函數(shù)關(guān)系式;

如圖,當(dāng)為何值時(shí),點(diǎn)恰好落在邊上的高上?

【答案】;; ; 當(dāng)時(shí);②當(dāng)時(shí),;

【解析】

(1)只需利用三角函數(shù)就可解決問題;

(2)表示出RH,F(xiàn)C建立方程求解即可;

(3)可分PQR全部在ABC內(nèi)和PQR部分在ABC內(nèi)兩種情況討論:當(dāng)PQR全部在ABC內(nèi)時(shí),只需運(yùn)用三角形的面積公式就可解決問題;當(dāng)PQR部分在ABC內(nèi)時(shí),只需運(yùn)用割補(bǔ)法就可解決問題;

(4)可通過構(gòu)造K型全等,并利用相似三角形的性質(zhì)來解決問題.

如圖①,

由題意可知,

,

;; 如圖①,點(diǎn)恰好落在上時(shí),,

.; ①當(dāng)時(shí),如圖①

過點(diǎn)于點(diǎn)

②當(dāng)時(shí),如圖③

過點(diǎn)于點(diǎn),交于點(diǎn),

則有,,

;; 點(diǎn)上,且點(diǎn)的高上,如圖④

過點(diǎn),

易證,則有

易求得,,,

,,

根據(jù),得

解得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ABC的平分線與在∠ACE的平分線相交于點(diǎn)D.已知∠ABC=70°,∠ACB=30°,求∠A和∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知點(diǎn)O是邊AB、AC垂直平分線的交點(diǎn),點(diǎn)E是∠ABC、∠ACB角平分線的交點(diǎn),若∠O+E180°,則∠A_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B6,0)的直線AB與直線OA相交于點(diǎn)A4,2).

1)求直線AB的函數(shù)表達(dá)式;

2)若在y軸上存在一點(diǎn)M,使MA+MB的值最小,請(qǐng)求出點(diǎn)M的坐標(biāo);

3)在x軸上是否存在點(diǎn)N,使△AON是等腰三角形?如果存在,直接寫出點(diǎn)N的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,的中點(diǎn),的中點(diǎn),過點(diǎn)的延長(zhǎng)線于點(diǎn)

求證:;

當(dāng)滿足什么條件時(shí),四邊形是菱形,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC的三個(gè)頂點(diǎn)分別為A23)、B3,1)、C(-2,-2.

1)請(qǐng)?jiān)趫D中作出ABC關(guān)于y軸對(duì)稱圖形DEFA、BC的對(duì)應(yīng)點(diǎn)分別是D、E、F),并直寫出D、E、F的坐標(biāo).DE、F點(diǎn)的坐標(biāo)是:D( , ) E( , ) F( , )

2)求四邊形ABED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知等邊ABC中,DAC的中點(diǎn),EBC延長(zhǎng)線上的一點(diǎn),且CE=CD,DMBC,垂足為M.

(1)求∠E的度數(shù).

(2)求證:MBE的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的外角的平分線交邊的垂直平分線于點(diǎn).于點(diǎn),于點(diǎn).

1)求證:

2)若,,求的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,E在線段AC上,連接AD, BE的延長(zhǎng)線交AD于F.

(1)猜想線段BE、AD的數(shù)量關(guān)系和位置關(guān)系:_______________(不必證明);

(2)當(dāng)點(diǎn)E為△ABC內(nèi)部一點(diǎn)時(shí),使點(diǎn)D和點(diǎn)E分別在AC的兩側(cè),其它條件不變.

①請(qǐng)你在圖2中補(bǔ)全圖形;

②(1)中結(jié)論成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案