【題目】計算:
(1)(﹣5)+(﹣4)﹣(+6)﹣(﹣7).
(2)|﹣81|÷2÷(﹣16).
(3).
(4)﹣22.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(t>0).過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,說明理由.
(3)當t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點P,下列說法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正確的個數(shù)有( )個。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是工人將貨物搬運上貨車常用的方法,把一塊木板斜靠在貨車車廂的尾部,形成一個斜坡,貨物通過斜坡進行搬運.根據(jù)經(jīng)驗,木板與地面的夾角為20°(即圖2中∠ACB=20°)時最為合適,已知貨車車廂底部到地面的距離AB=1.5m,木板超出車廂部分AD=0.5m,請求出木板CD的長度?
(參考數(shù)據(jù):sin20°≈0.3420,cos20°≈0.9397,精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平安路與幸福路是兩條平行的道路,且都與新興大街垂直,老街與小米胡同垂直,書店位于老街與小米胡同的交口處.如果小強同學站在平安路與新興大街交叉路口,準備去書店,按圖中的街道行走,最近的路程為( 。
A. 300m B. 400m C. 500m D. 700m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,圖甲由長方形①,長方形②組成,圖甲通過移動長方形②得到圖乙.
(1)S甲= ,S乙= (用含a、b的代數(shù)式分別表示);
(2)利用(1)的結果,說明a2、b2、(a+b)(a﹣b)的等量關系;
(3)現(xiàn)有一塊如圖丙尺寸的長方形紙片,請通過對它分割,再對分割的各部分移動,組成新的圖形,畫出圖形,利用圖形說明(a+b)2、(a﹣b)2、ab三者的等量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=10cm,AC=BD=6cm.∠CAB=∠DBA,點P在線段AB上以2cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).設點Q的運動速度為xcm/s,若使得△ACP與△BPQ全等,則x的值為 ______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的長AB=30,寬BC=20.
(1)如圖①,若在矩形ABCD的內(nèi)部沿四周有寬為1的環(huán)形區(qū)域,矩形A′B′C′D′與矩形ABCD相似嗎?請說明理由;
(2)如圖②,當x為多少時,矩形ABCD與矩形A′B′C′D′相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE.填空:
①∠AEB的度數(shù)為______;
②線段AD,BE之間的數(shù)量關系為______.
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com