【題目】如圖,點E是△ABC的內心,AE的延長線和△ABC的外接圓相交于點D.AD與BC相交于點F,連結BE,DC,已知EF=2,CD=5,則AD=______________.

【答案】

【解析】

根據(jù)三角形的內心的定義得到BD=CD,BDF∽△ADB,根據(jù)相似三角形的性質列出比例式,代入計算即可.

∵點EABC的內心,

∴∠BAD=CAD,ABE=CBE,

BD=CD=5,

由圓周角定理得,∠CAD=CBD,

∵∠DBE=CBD+CBE,DEB=BAD+CAD,

∴∠DBE=DEB.

DE=DB=5,

DF=DE-EF=3,

∵∠DBC=BAD,BDF=ADB,

∴△BDF∽△ADB,

AD=,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知O的直徑為10,點A,點B,點C在O上,CAB的平分線交O于點D

1如圖,若BC為O的直徑,AB=6,求AC,BD,CD的長;

2如圖,若CAB=60°,求BD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線形拱橋,當拱頂離水面2m時,水面寬4m,則水面下降1m時,水面寬度增加_____m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù) yax2+bx+ca≠0)中,函數(shù) y 與自變量 x 的部分對應值如下表:

(1)求二次函數(shù)的解析式;

(2)求該函數(shù)圖象與 x 軸的交點坐標;

(3)不等式 ax2+bx+c+3>0 的解集是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某區(qū)在實施居民用水額定管理前,對居民生活用水情況進行了調查,下表是通過簡單隨機抽樣獲得的50個家庭去年月平均用水量(單位:噸),并將調查數(shù)據(jù)進行如下整理:

4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7

4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5

3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2

5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5

4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5

頻數(shù)分布表

分組

劃記

頻數(shù)

2.0x≤3.5

正正

11

3.5x≤5.0


19

5.0x≤6.5



6.5x≤8.0



8.0x≤9.5


2

合計


50

1)把上面頻數(shù)分布表和頻數(shù)分布直方圖補充完整;

2)從直方圖中你能得到什么信息?(寫出兩條即可);

3)為了鼓勵節(jié)約用水,要確定一個用水量的標準,超出這個標準的部分按1.5倍價格收費,若要使60%的家庭收費不受影響,你覺得家庭月均用水量應該定為多少?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知正比例函數(shù)y= -2x和反比例函數(shù)的圖象交于Aa,-4,B兩點。過原點O的另一條直線l與雙曲線交于點P,Q兩點(P點在第二象限),若以點A,B,P,Q為頂點的四邊形面積為24,則點P的坐標是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ACB 90,BAC 30 AB2,DAB邊上的一個動點(點D不與點AB重合),連接CD,過點DCD的垂線交射線CA于點E.當ADE為等腰三角形時,AD的長度為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計算結果精確到0.1m,參考數(shù)據(jù)sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)

(1)當?shù)醣鄣撞緼與貨物的水平距離AC為5m時,吊臂AB的長為   m.

(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司計劃購買A,B兩種型號的機器人搬運材料.已知A型機器人比B型機器人每小時多搬運30kg材料,且A型機器人搬運1000kg材料所用的時間與B型機器人搬運800kg材料所用的時間相同.

(1)求A,B兩種型號的機器人每小時分別搬運多少材料;

(2)該公司計劃采購A,B兩種型號的機器人共20臺,要求每小時搬運材料不得少于2800kg,則至少購進A型機器人多少臺?

查看答案和解析>>

同步練習冊答案