C
分析:①由非負(fù)數(shù)的性質(zhì),即可證得y
2=-(x-2)
2-1≤-1<0,即可得無論x取何值,y
2總是負(fù)數(shù);
②由拋物線l
1:y
1=a(x+1)
2+2與l
2:y
2=-(x-2)
2-1交于點B(1,-2),可求得a的值,然后由拋物線的平移的性質(zhì),即可得l
2可由l
1向右平移3個單位,再向下平移3個單位得到;
③由 y
1-y
2=-(x+1)
2+2-[-(x-2)
2-1]=-6x+6,可得隨著x的增大,y
1-y
2的值減;
④首先求得點A,C,D,E的坐標(biāo),即可證得AF=CF=DF=EF,又由AC⊥DE,即可證得四邊形AECD為正方形.
解答:①∵(x-2)
2≥0,
∴-(x-2)
2≤0,
∴y
2=-(x-2)
2-1≤-1<0,
∴無論x取何值,y
2總是負(fù)數(shù);
故①正確;
②∵拋物線l
1:y
1=a(x+1)
2+2與l
2:y
2=-(x-2)
2-1交于點B(1,-2),
∴當(dāng)x=1時,y=-2,
即-2=a(1+1)
2+2,
解得:a=-1;
∴y
1=-(x+1)
2+2,
∴l(xiāng)
2可由l
1向右平移3個單位,再向下平移3個單位得到;
故②正確;
③∵y
1-y
2=-(x+1)
2+2-[-(x-2)
2-1]=-6x+6,
∴隨著x的增大,y
1-y
2的值減;
故③錯誤;
④設(shè)AC與DE交于點F,
∵當(dāng)y=-2時,-(x+1)
2+2=-2,
解得:x=-3或x=1,
∴點A(-3,-2),
當(dāng)y=-2時,-(x-2)
2-1=-2,
解得:x=3或x=1,
∴點C(3,-2),
∴AF=CF=3,AC=6,
當(dāng)x=0時,y
1=1,y
2=-5,
∴DE=6,DF=EF=3,
∴四邊形AECD為平行四邊形,
∴AC=DE,
∴四邊形AECD為矩形,
∵AC⊥DE,
∴四邊形AECD為正方形.
故④正確.
故選C.
點評:此題考查了待定系數(shù)法求二次函數(shù)的解析式、非負(fù)數(shù)的性質(zhì)、二次函數(shù)的平移以及正方形的判定.此題難度較大,注意掌握方程思想與數(shù)形結(jié)合思想的應(yīng)用.