【題目】一個不透明的口袋里裝有分別標(biāo)有漢字“靈”、“秀”、“鄂”、“州”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.
(1)若從中任取一個球,球上的漢字剛好是“鄂”的概率為多少?
(2)甲從中任取一球,不放回,再從中任取一球,請用樹狀圖的方法,求出甲取出的兩個球上的漢字恰能組成“靈秀”或“鄂州”的概率P1;
(3)乙從中任取一球,記下漢字后再放回袋中,然后再從中任取一球,記乙取出的兩個球上的漢字恰能組成“靈秀”或“鄂州”的概率為P2,指出P1,P2的大小關(guān)系(請直接寫出結(jié)論,不必證明).
【答案】解:(1)∵有漢字“靈”、“秀”、“鄂”、“州”的四個小球,任取一球,共有4種不同結(jié)果,
∴球上漢字剛好是“鄂”的概率 P=。
(2)畫樹狀圖得:
∵共有12種不同取法,能滿足要求的有4種,
∴P1=。
(3)畫樹狀圖得:
∵共有16種不同取法,能滿足要求的有4種,
∴P2=。
∴P1>P2。
【解析】
試題(1)由有漢字“靈”、“秀”、“鄂”、“州”的四個小球,任取一球,共有4種不同結(jié)果,利用概率公式直接求解即可求得答案。
(2)首先根據(jù)題意畫出樹狀圖或列表,然后根據(jù)圖表求得所有等可能的結(jié)果與甲取出的兩個球上的漢字恰能組成“靈秀”或“鄂州”的情況,再利用概率公式即可求得答案;注意是不放回實驗。
(3)首先根據(jù)題意畫出樹狀圖或列表,然后根據(jù)圖表求得所有等可能的結(jié)果與甲取出的兩個球上的漢字恰能組成“靈秀”或“鄂州”的情況,再利用概率公式即可求得答案;注意是放回實驗。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=8,BC=12,點(diǎn)E是邊BC上一點(diǎn),BE=5,點(diǎn)F是射線BA上一動點(diǎn),連接EF,將△BEF沿著EF折疊,使B點(diǎn)的對應(yīng)點(diǎn)P落在長方形一邊的垂直平分線上,連接BP,則BP的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設(shè)每件商品降價元。據(jù)此規(guī)律,請回答:
(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。
(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達(dá)到2100元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(0,4),B(﹣2,2),C(3,0).
(1)作△ABC關(guān)于x軸對稱的△A1B1C1;
(2)求△A1B1C1的面積與A1B1邊上的高;
(3)在x軸上有一點(diǎn)P,使PA+PB最小,求PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的面積為1.分別倍長(延長一倍),BC,CA得到.再分別倍長A1B1,B1C1,C1A1得到.…… 按此規(guī)律,倍長2018次后得到的 的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,AB⊥AC,BC交⊙O于D,E是AC的中點(diǎn),ED與AB的延長線相交于點(diǎn)F.
(1)求證:DE為⊙O的切線.
(2)求證:AB:AC=BF:DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在RtΔABC中,∠C=90, BC=6cm, AC=8cm,如果按圖中所示方法將ΔBCD沿BD折疊,使點(diǎn)C落在邊AB上的點(diǎn)C'處,那么ΔADC'的周長是________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時,連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn),若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動點(diǎn),則周長的最小值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com