如圖,BE⊥AC于E,CF⊥AB于F,CF、BE相交于點(diǎn)D,且BD=CD.求證:AD平分∠BAC.
精英家教網(wǎng)
證明:∵BE⊥AC,CF⊥AB,
∴∠BFD=∠CED=90°.
在△BDF與△CDE中,
∠BFD=∠CED
∠BDF=∠CDE(對(duì)頂角相等)
BD=CD  
,
∴Rt△BDF≌Rt△CDE(AAS).
∴DF=DE,
∴AD是∠BAC的平分線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23.如圖,BE⊥AC于E,CF⊥AB于F,CF、BE相交于點(diǎn)D,且BD=CD.求證:AD平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,BE⊥AC于E,CF⊥AB于F,CF、BE相交于點(diǎn)D,且BD=CD.求證:AD平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:重慶市期中題 題型:證明題

如圖,BE⊥AC于E,CF⊥AB于F,CF、BE相交于點(diǎn)D,且BD=CD.求證:AD平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:四川省期中題 題型:證明題

如圖,BE⊥AC于E,CF⊥AB于F,CF、BE相交于點(diǎn)D,且BD=CD.求證:AD平分∠BAC.

查看答案和解析>>

同步練習(xí)冊(cè)答案