【題目】如圖,在梯形ABCD中,AB∥DC,過對(duì)角線AC的中點(diǎn)O作EF⊥AC,分別交邊AB、CD于點(diǎn)E、F,連接CE、AF.
(1)求證:四邊形AECF是菱形;
(2)若EF=4,tan∠OAE=,求四邊形AECF的面積.
【答案】(1)證明詳見解析;(2)20.
【解析】
試題分析:(1)運(yùn)用“對(duì)角線互相垂直平分的四邊形是菱形”判定,已知EF⊥AC,AO=OC,只需要證明OE=OF即可,用全等三角形得出;
(2)菱形的面積可以用對(duì)角線積的一半來表示,由已知條件,解直角三角形AOE可求AC、EF的長(zhǎng)度.
試題解析:(1)證明:方法1:
∵AB∥DC,
∴∠1=∠2.
在△CFO和△AEO中,∠1=∠2,∠FOC=∠EOA,OC=OA,
∴△CFO≌△AEO,
∴OF=OE,
又∵OA=OC,
∴四邊形AECF是平行四邊形.
∵EF⊥AC,
∴四邊形AECF是菱形.
方法2:證△AEO≌△CFO同方法1,
∴CF=AE,
∵CF∥AE,
∴四邊形AFCE是平行四邊形.
∵OA=OC,EF⊥AC,
∴EF是AC的垂直平分線,
∴AF=CF,
∴四邊形AECF是菱形.
(2)解:∵四邊形AECF是菱形,EF=4,
∴OE=EF=×4=2.
在Rt△AEO中,
∵tan∠OAE=,
∴OA=5,
∴AC=2AO=2×5=10.
∴=EFAC=×4×10=20.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的有( ) ①對(duì)頂角相等;②相等的角是對(duì)頂角;③若兩個(gè)角不相等,則這兩個(gè)角一定不是對(duì)頂角;④若兩個(gè)角不是對(duì)頂角,則這兩個(gè)角不相等.2·1·c·n·j·y
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某軍事行動(dòng)中,對(duì)軍隊(duì)部署的方位,采用代碼的方式來表示.例如,北偏東30°方向45km的位置與鐘面相結(jié)合,以鐘面圓心為基準(zhǔn),時(shí)針指向北偏東30°的時(shí)刻是1∶00,那么這個(gè)地點(diǎn)就用代 碼010045表示.按這種表示方式,南偏東40°方向78km的位置,可用代碼表示為..
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2﹣4x﹣4的頂點(diǎn)坐標(biāo)為( )
A.(2,﹣8)
B.(2,8)
C.(﹣2,8)
D.(﹣2,﹣8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)數(shù)學(xué)愛好者小森偶然閱讀到這樣一道競(jìng)賽題:
一個(gè)圓內(nèi)接六邊形ABCDEF,各邊長(zhǎng)度依次為 3,3,3,5,5,5,求六邊形ABCDEF的面積.
小森利用“同圓中相等的弦所對(duì)的圓心角相等”這一數(shù)學(xué)原理,將六邊形進(jìn)行分割重組,得到圖③.可以求出六邊形ABCDEF的面積等于 .
(2)類比探究:一個(gè)圓內(nèi)接八邊形,各邊長(zhǎng)度依次為2,2,2,2,3,3,3,3.求這個(gè)八邊形的面積.請(qǐng)你仿照小森的思考方式,求出這個(gè)八邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個(gè)長(zhǎng)為2x、寬為2y的長(zhǎng)方形,沿圖中虛線用剪刀剪成四個(gè)完全相同的小長(zhǎng)方形,然后按圖2所示拼成一個(gè)正方形.
(1)你認(rèn)為圖2中的陰影部分的正方形的邊長(zhǎng)等于
(2)試用兩種不同的方法求圖2中陰影部分的面積.
方法1: 方法2:
(3)根據(jù)圖2你能寫出下列三個(gè)代數(shù)式之間的等量關(guān)系嗎?
代數(shù)式:(x+y)2,(x-y)2,4xy.
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:
若x+y=4,xy=3,則(x-y)2=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年3月,某中學(xué)以“每天閱讀l小時(shí)”為主題,對(duì)學(xué)生最喜愛的書籍類型進(jìn)行隨機(jī)抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖1和圖2提供的信息,解答下列問題:
(1)請(qǐng)把折線統(tǒng)計(jì)圖(圖1)補(bǔ)充完整;
(2)如果這所中學(xué)共有學(xué)生900名,那么請(qǐng)你估算最喜愛科普類書籍的學(xué)生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com