【題目】如圖是某超市地下停車場入口的設(shè)計圖,請根據(jù)圖中數(shù)據(jù)計算CE的長度.(結(jié)果保留小數(shù)點后兩位;參考數(shù)據(jù):sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)

【答案】解:由已知有:∠BAE=22°,∠ABC=90°,∠CED=∠AEC=90° ∴∠BCE=158°,
∴∠DCE=22°,
又∵tan∠BAE= ,
∴BD=ABtan∠BAE,
又∵cos∠BAE=cos∠DCE=
∴CE=CDcos∠BAE
=(BD﹣BC)cos∠BAE
=( ABtan∠BAE﹣BC)cos∠BAE
=(10×0.4040﹣0.5)×0.9272
≈3.28(m)
【解析】通過解Rt△BAD求得BD=ABtan∠BAE,通過解Rt△CED求得CE=CDcos∠BAE.然后把相關(guān)角度所對應(yīng)的函數(shù)值和相關(guān)的線段長度代入進行求值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足為O,AD∥BC,且AB=5,BC=12,則AD的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,BC=AC=2,D是斜邊AB上一個動點,把△ACD沿直線CD折疊,點A落在同一平面內(nèi)的A′處,當(dāng)A′D平行于Rt△ABC的直角邊時,AD的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△OAB的一邊OB在x軸的正半軸上,點A的坐標(biāo)為(6,8),OA=OB,點P在線段OB上,點Q在y軸的正半軸上,OP=2OQ,過點Q作x軸的平行線分別交OA,AB于點E,F(xiàn).

(1)求直線AB的解析式;
(2)若四邊形POEF是平行四邊形,求點P的坐標(biāo);
(3)是否存在點P,使△PEF為直角三角形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某超市地下停車場入口的設(shè)計圖,請根據(jù)圖中數(shù)據(jù)計算CE的長度.(結(jié)果保留小數(shù)點后兩位;參考數(shù)據(jù):sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A的坐標(biāo)為(2,0),點P在直線y=x上運動,當(dāng)以點P為圓心,PA的長為半徑的圓的面積最小時,點P的坐標(biāo)為(
A.(1,﹣1)
B.(0,0)
C.(1,1)
D.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)委員統(tǒng)計全班50位同學(xué)對語文、數(shù)學(xué)、英語、體育、音樂五個科目最喜歡情況,所得數(shù)據(jù)用表格與條形圖描述如下:

科目

語文

數(shù)學(xué)

英語

體育

音樂

人數(shù)

10

a

15

3

2


(1)表格中a的值為;
(2)補全條形圖;
(3)小李是最喜歡體育之一,小張是最喜歡音樂之一,計劃從最喜歡體育、音樂的人中,每科目各選1人參加學(xué)校訓(xùn)練,用列表或樹形圖表示所有結(jié)果,并求小李、小張至少有1人被選上的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明去爬山,在山腳看山頂角度為30°,小明在坡比為5:12的山坡上走1300米,此時小明看山頂?shù)慕嵌葹?0°,求山高( )

A.600﹣250
B.600 ﹣250米
C.350+350
D.500

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的2016年6月份的月歷表中,任意框出表中豎列上三個相鄰的數(shù),這三個數(shù)的和不可能是(  )

A.27
B.51
C.69
D.72

查看答案和解析>>

同步練習(xí)冊答案