如圖,⊙O1與⊙O2相交,P是⊙O1上的一點,過P點作⊙O1或⊙O2的切線,則切線的條數(shù)可能是( )

A.1,2
B.1,3
C.1,2,3
D.1,2,3,4
【答案】分析:根據點P在大圓的弧AB上的不同位置情況得到切線條數(shù).
解答:解:設兩圓相交于點A、B,
當點P在大圓的優(yōu)弧AB上時,可作出大圓本身的一條切線,作出小圓的2條切線,一共是3條;
當點P在兩圓交點時,可作出大圓的一條切線,小圓的一條切線一共是2條;
當點P在大圓的劣弧AB上時,只可作出大圓的一條切線.
故選C.
點評:應根據點P在大圓的弧AB上的不同位置得到切線可能的條數(shù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

12、已知:如圖,⊙O1與⊙O2外切于點P,直線AB過點P交⊙O1于A,交⊙O2于B,點C、D分別為⊙O1、⊙O2上的點,且∠ACP=65°,則∠BDP=
65
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,⊙O1與⊙O2外切于M點,AF是兩圓的外公切線,A、B是切點,DF經過O1、O2,分別交⊙O1于D、⊙O2于E,AC是⊙O1的直徑,BC經過M點,連接AD.
(1)求證:AD∥BC;
(2)求證:MF2=AF•BF;
(3)如果⊙O1的直徑長為8,tan∠ACB=
34
,求⊙O2的直徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,⊙O1與⊙O2相交于C、D兩點,⊙O1的割線PAB與DC的延長線交于點P,PN與⊙O2相切于點N,若PB=10,AB=6,則PN=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,⊙O1與⊙O2外切于A點,直線l與⊙O1、⊙O2分別切于B,C點,若⊙O1的半徑r1=2cm,⊙O2的半徑r2=3cm.求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖:⊙O1與⊙O2相交于AB兩點,過點A、B的直線分別與⊙O1交于C、E,與⊙O2交于D、F,連接CE、DF.
求證:CE∥DF.

查看答案和解析>>

同步練習冊答案