6、如圖所示,△ABC是等邊三角形,BD是中線,DE⊥BC于E.若EC=2,則BE=( 。
分析:過點A作AM⊥BC于點M,即DE∥AM,由于△ABC為等邊三角形,可知點M為BC邊的中點,D為AC的中點,根據(jù)中位線定理,可知CM=2CE,從而得出BC的長,即可得出BE的長.
解答:解:過點A作AM垂直BC于點M(如下圖所示),
根據(jù)題意可得,DE∥AM,
又△ABC是等邊三角形,即D和M分別是AC和BC的中點,
在△AMC中,DE為中位線,
即有MC=2EC=4,
故BC=8,
所以BE=BC-EC=6.
故選C.
點評:本題主要考查了等邊三角形的性質(zhì)以及三角形中位線定理知識的運用,題目不難,適合作為學生平時練習的題目.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

22、如圖所示,△ABC是等邊三角形,延長BC至E,延長BA至F,使AF=BE,連接CF、EF,過點F作直線FD⊥CE于D,試發(fā)現(xiàn)∠FCE與∠FEC的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖所示,△ABC是正三角形,△A1B1 C1的三條邊A1B1、BlC1、C1A1交△ABC各邊分別于C2、C3,A2、A3,B2、B3.已知A2C3=C2B3=B2A3,且C2C32+B2B32=A2A32.請你證明:AlB1⊥C1A1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,△ABC是邊長為a的正三角形紙張,今在各角剪去一個三角形,使得剩下的六邊形PQRSTU為正六邊形,則此正六邊形的周長為何( 。
A、2a
B、3a
C、
3
2
a
D、
9
4
a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖所示,△ABC是等邊三角形,AQ=PQ,PR⊥AB于R點,PS⊥AC于S點,PR=PS,則四個結(jié)論:①點P在∠A的平分線上;②AS=AR;③QP∥AR;④△BRP≌△QSP,正確的結(jié)論是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黃陂區(qū)模擬)如圖所示,△ABC是⊙O的內(nèi)接正三角形,四邊形DEFG是⊙O的內(nèi)接正方形,EF∥BC,則∠AOF為( 。

查看答案和解析>>

同步練習冊答案