【題目】如圖,MN為⊙O的直徑,A、B是⊙O上的兩點,過A作AC⊥MN于點C,過B作BD⊥MN于點D,P為DC上的任意一點,若MN=20,AC=8,BD=6,則PA+PB的最小值是

【答案】14
【解析】解:∵MN=20,
∴⊙O的半徑=10,
連接OA、OB,
在Rt△OBD中,OB=10,BD=6,
∴OD= =8;
同理,在Rt△AOC中,OA=10,AC=8,
∴OC= =6,
∴CD=8+6=14,
作點B關(guān)于MN的對稱點B′,連接AB′,則AB′即為PA+PB的最小值,B′D=BD=6,過點B′作AC的垂線,交AC的延長線于點E,
在Rt△AB′E中,
∵AE=AC+CE=8+6=14,B′E=CD=14,
∴AB′= =14
故答案為:14

先由MN=20求出⊙O的半徑,再連接OA、OB,由勾股定理得出OD、OC的長,作點B關(guān)于MN的對稱點B′,連接AB′,則AB′即為PA+PB的最小值,B′D=BD=6,過點B′作AC的垂線,交AC的延長線于點E,在Rt△AB′E中利用勾股定理即可求出AB′的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(3,﹣3),點B的坐標(biāo)為(﹣1,3),回答下列問題

(1)C的坐標(biāo)是

(2)B關(guān)于原點的對稱點的坐標(biāo)是

(3)ABC的面積為

(4)畫出△ABC關(guān)于x軸對稱的△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形和下列邊長相同的正多邊形地磚組合中,不能夠鋪滿地面的是(  )

A. 正三角形 B. 正六邊形

C. 正八邊形 D. 正三角形和正六邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人勻速從同一地點到1500米處的圖書館看書,甲出發(fā)5分鐘后,乙以50米/分的速度沿同一路線行走.設(shè)甲乙兩人相距(米),甲行走的時間為(分),關(guān)于的函數(shù)函數(shù)圖像的一部分如圖所示.

(1)求甲行走的速度;

(2)在坐標(biāo)系中,補畫關(guān)于函數(shù)圖象的其余部分;

(3)問甲、乙兩人何時相距360米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知:DGBC,ACBCFEAB,∠1=∠2.

求證:CDAB.

證明:DGBCACBC(已知)

∴∠DGB=∠ACB=90°(垂直的定義)

DGAC( )

∴∠2=∠DCA( )

∵∠1=∠2(已知)

∴∠1= (等量代換)

(同位角相等,兩直線平行)

=∠ADC( )

EFAB(已知), ∴∠AEF=90°( ),∴∠ADC=90° ,

CDAB(垂直的定義)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)

(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為

(2)若每塊小矩形的面積為10,四個正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蘋果生產(chǎn)基地,用30名工人進行采摘或加工蘋果 ,每名工人只能做其中一項工作.蘋果的銷售方式有兩種:一種是可以直接出售;另一種是可以將采摘的蘋果加工成罐頭出售.直接出售每噸獲利4 000元;加工成罐頭出售每噸獲利10 000元.采摘的工人每人可采摘蘋果0.4噸;加工罐頭的工人每人可加工0.3噸.設(shè)有x名工人進行蘋果采摘,全部售出后,總利潤為y元.

(1)yx的函數(shù)關(guān)系式;

(2)如何分配工人才能獲利最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點MO,N對應(yīng)的數(shù)分別為-1,0,3,P為數(shù)軸上任意一點,其對應(yīng)的數(shù)為x

1MN的長為 ;

2如果點P到點MN的距離相等,那么x的值是

3數(shù)軸上是否存在點P,使點P到點M、N的距離之和是8?若存在,直接寫出x的值;若不存在,請說明理由

4如果點P以每分鐘1個單位長度的速度從點O向左運動同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設(shè)t分鐘時點P到點M、N的距離相等t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年春季為預(yù)防流感,某校利用休息日對教室進行藥熏消毒,已知藥物燃燒過程及燃燒完后空氣中的含藥量y(mg/m3)與時間x(h)之間的關(guān)系如圖所示,根據(jù)消毒要求,空氣中的含藥量不低于3mg/m3且持續(xù)時間不能低于10h.請你幫助計算一下,當(dāng)空氣中的含藥量不低于3mg/m3時,持續(xù)時間可以達到h.

查看答案和解析>>

同步練習(xí)冊答案