(1)證明:如圖1,連接AD.
∵AB=AC,BD=CD,
∴AD⊥BC.
又∵∠ABC=45°,
∴BD=AB•cos∠ABC即AB=
BD.
∵∠BAE=∠BDM,∠ABE=∠DBM,
∴△ABE∽△DBM.
∴
,
∴AE=
MD.
(2)解:∵cos60°=
,
∴MD=AE•cos∠ABC=AE•
,即AE=2MD.
∴AE=2MD;
(3)解:如圖2,連接AD,EP.
∵AB=AC,∠ABC=60°,
∴△ABC是等邊三角形.
又∵D為BC的中點,
∴AD⊥BC,∠DAC=30°,BD=DC=
AB.
∵∠BAE=∠BDM,∠ABE=∠DBM,
∴△ABE∽△DBM.
∴
,
∠AEB=∠DMB.
∴EB=2BM.
又∵BM=MP,
∴EB=BP.
∵∠EBM=∠ABC=60°,
∴△BEP為等邊三角形,
∴EM⊥BP,
∴∠BMD=90°,
∴∠AEB=90°.
在Rt△AEB中,AE=2
,AB=7,
∴BE=
.
∴tan∠EAB=
.
∵D為BC中點,M為BP中點,
∴DM∥PC.
∴∠MDB=∠PCB,
∴∠EAB=∠PCB.
∴tan∠PCB=
.
在Rt△ABD中,AD=AB•sin∠ABD=
,
在Rt△NDC中,ND=DC•tan∠NCD=
,
∴NA=AD-ND=
.
過N作NH⊥AC,垂足為H.
在Rt△ANH中,NH=
AN=
,AH=AN•cos∠NAH=
,
∴CH=AC-AH=
,
∴tan∠ACP=
.
分析:(1)由題意知∠BAE=∠BDM,∠ABE=∠DBM故有△ABE∽△DBM?AE:DM=AB:BD,而∠ABC=45°?AB=
BD,則有AE=
MD;
(2)由于cos60°=
,類似(1)可得到AE=2MD;
(3)由于△ABE∽△DBM,相似比為2,故有EB=2BM,由題意知得△BEP為等邊三角形,有EM⊥BP,∠BMD=∠AEB=90°,在Rt△AEB中求得AE、AB、tan∠EAB的值,由D為BC中點,M為BP中點,得DM∥PC.
求得tan∠PCB的值,在Rt△ABD和Rt△NDC中,由三角函數(shù)的概念求得AD、ND的值,進而求得tan∠ACP的值.
點評:本題考查了相似三角形的判定,利用直角三角形的性質(zhì),三角函數(shù)的概念求解,通過作輔助線使線段與線段的關(guān)系得到明確.本題的計算量大,難度適中.