【題目】如圖,在平行四邊形ABCD中,AB=4BC=5∠ABC=60° 按以下步驟作圖:C為圓心,以適當長為半徑做弧,交CB、CDMN兩點;分別以MN為圓心,以大于MN的長為半徑作弧,兩弧相交于點E,作射線CEBD于點O,交AD邊于點F;則BO的長度為(  )

A.B.C.D.

【答案】C

【解析】

如圖(見解析),過點D的延長線,垂足為G,先根據(jù)作圖過程得出CF的角平分線,從而可得,再根據(jù)平行四邊形的性質、平行線的性質可得,,然后利用等腰三角形的性質、直角三角形的性質得出,,,最后根據(jù)相似三角形的判定與性質即可得.

如圖,過點D的延長線,垂足為G

由作圖過程可知,CF的角平分線

四邊形ABCD是平行四邊形

,

,

中,,

中,

,即

解得

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為等腰△ABC內一點,AB=BC,∠BPC=108°,DAC中點,BDPC相交于點E,已知P△ABE的內心.

1)求證:∠PEB=60°

2)求∠PAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC10,點D是邊BC上一動點(不與B,C重合)ADEBα,DEAC于點E,且cosα.下列結論:①△ADE∽△ACD;BD6時,ABDDCE全等;③△DCE為直角三角形時,BD80CE≤6.4.其中正確的結論是______________.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店準備購進兩種商品,種商品毎件的進價比種商品每件的進價多20元,用3000元購進種商品和用1800元購進種商品的數(shù)量相同.商店將種商品每件的售價定為80元,種商品每件的售價定為45元.

1種商品每件的進價和種商品每件的進價各是多少元?

2)商店計劃用不超過1560元的資金購進兩種商品共40件,其中種商品的數(shù)量不低于種商品數(shù)量的一半,該商店有幾種進貨方案?

3)端午節(jié)期間,商店開展優(yōu)惠促銷活動,決定對每件種商品售價優(yōu)惠)元,種商品售價不變,在(2)條件下,請設計出銷售這40件商品獲得總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一塊含30°角的三角板的直角頂點放在反比例函數(shù)y=-x0)的圖象上的點C處,另兩個頂點分別落在原點Ox軸的負半軸上的點A處,且∠CAO=30°,則AC邊與該函數(shù)圖象的另一交點D的坐標為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學疫情期間為了切實抓好停課不停學活動,借助某軟件平臺隨機抽取了該校部分學生的在線學習時間,并將結果繪制成如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)以上信息回答下列問題

1)本次調查的人數(shù)為   學習時間為7小時的所對的圓心角為 ;

2)補全頻數(shù)分布直方圖;

3)若全校共有學生1800人,估計有多少學生在線學習時間不低于8個小時.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2020324日,工信部發(fā)布《關于推動加快發(fā)展的通知》,全力推進網(wǎng)絡建設、應用推廣、技術發(fā)展和安全保障.工信部提出,要培育新型消費模式,加快用戶向遷移,推動“醫(yī)療健康創(chuàng)新發(fā)展,實施“工業(yè)互聯(lián)網(wǎng)”512工程,促進“車聯(lián)網(wǎng)”協(xié)同發(fā)展,構建應用生態(tài)系統(tǒng).現(xiàn)“網(wǎng)絡”已成為一個熱門詞匯,某校為了解九年級學生對“網(wǎng)絡”的了解程度,對九年級學生行了一次測試(一共10道題答對1道得1分,滿分10),測試結束后隨機抽取了部分學生的成績整理分析,繪制出如圖所示的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:

1)請補全條形統(tǒng)計圖,扇形統(tǒng)計圖中    __;

2)所調查學生成績的眾數(shù)是_    ____分,平均數(shù)是_    分;

3)若該校九年級學生有人,請估計得分不少于分的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年是脫貧攻堅最后一年,某鎮(zhèn)擬修一條連通貧困山區(qū)村的公路,現(xiàn)有甲、乙兩個工程隊.若甲、乙合作,36天可以完成,需用600萬元;若甲單獨做20天后,剩下的由乙做,還需40天才能完成,這樣所需550萬元.

1)求甲、乙兩隊單獨完成此項工程各需多少天?

2)求甲、乙兩隊單獨完成此項工程各需多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c與一直線相交于A(1,0),C(23)兩點,與y軸交于點N.其頂點為D

1)拋物線及直線AC的函數(shù)關系式;

2)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點EEFBD交拋物線于點F,以B,D,E,F為頂點的四邊形能否為平行四邊形?若能,求點E的坐標;若不能,請說明理由;

3)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值.

查看答案和解析>>

同步練習冊答案