如圖,一次函數(shù)的圖象經(jīng)過(guò)M點(diǎn),與x軸交于A點(diǎn),與y軸交于B點(diǎn),根據(jù)圖中信息求:
(1)直線AB的函數(shù)關(guān)系式;
(2)若點(diǎn)P(m,n)是直線AB上的一動(dòng)點(diǎn),且-3≤m≤2,求n的取值范圍.

【答案】分析:(1)首先設(shè)直線AB的關(guān)系式是y=kx+b(k≠0)然后把B(0,6),M(-1,4)代入函數(shù)解析式,可得到一個(gè)關(guān)于k、b的方程組,再解方程組即可求出函數(shù)關(guān)系式;
(2)根據(jù)函數(shù)解析式y(tǒng)=-2x+4,把P(m,n)代入可得n=-2m+4,再根據(jù)一次函數(shù)的性質(zhì)可知n隨著m的增大而減小,再根據(jù)m的取值范圍確定n的取值范圍.
解答:解:(1)設(shè)直線AB的關(guān)系式是y=kx+b(k≠0),
∵圖象經(jīng)過(guò)B(0,6),M(-1,4),
,
解得
故y=-2x+6;

(2)∵點(diǎn)P(m,n)是直線AB上的一動(dòng)點(diǎn),
∴n=-2m+4,
∵-2<0,
∴n隨著m的增大而減小,
∴當(dāng)m取最小值時(shí),n最大,
∵-3≤m≤2,
∴當(dāng)m=-3時(shí),n的最大值=10.
當(dāng)m=2時(shí),n的最小值=0,
∴0≤n≤10.
點(diǎn)評(píng):此題主要考查了待定系數(shù)法求一次函數(shù)關(guān)系式,以及一次函數(shù)的性質(zhì),一次函數(shù)的性質(zhì):k>0,y隨x的增大而增大,函數(shù)從左到右上升;k<0,y隨x的增大而減小,函數(shù)從左到右下降.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y=
12x
的圖象和一次函數(shù)y=kx-7的圖象都經(jīng)過(guò)點(diǎn)P(m,2).
(1)求這個(gè)一次函數(shù)的解析式;
(2)如果等腰梯形ABCD的頂點(diǎn)A、B在這個(gè)一次函數(shù)的圖象上,頂點(diǎn)C、D在這個(gè)反比例函數(shù)的圖象上,兩底AD、BC與y軸平行,且A和B的橫坐標(biāo)分別為a、b(b>a>0),求代數(shù)式ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= –  ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)    求一次函數(shù)的解析式;

(2)    設(shè)函數(shù)y2=  (x>0)的圖象與y1= –  (x<0)的圖象關(guān)于y軸對(duì)稱(chēng).在y2=  (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過(guò)PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)(x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0),當(dāng)x<-1時(shí),一次函數(shù)值大于反比例函數(shù)值,當(dāng)x>-1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)求一次函數(shù)的解析式;

(2)設(shè)函數(shù)(x>0)的圖象與(x<0)的圖象關(guān)于y軸對(duì)稱(chēng),在(x>0)的圖象上取一點(diǎn)P(P點(diǎn)的橫坐標(biāo)大于2),過(guò)P點(diǎn)作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

解答:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)   求一次函數(shù)的解析式;

(2)   設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對(duì)稱(chēng).在y2= (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過(guò)PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于BC兩點(diǎn),且C(2,0).當(dāng)x<–1時(shí),一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時(shí),一次函數(shù)值小于反比例函數(shù)值.

(1)   求一次函數(shù)的解析式;

(2)   設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對(duì)稱(chēng).在y2= (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過(guò)PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案