(2005•武漢)如圖,外切于P點的⊙O1和⊙O2是半徑為3cm的等圓,連心線交⊙O1于點A,交⊙O2于點B,AC與⊙O2相切于點C,連接PC,則PC的長為( )
A.cm
B.cm
C.3cm
D.4.5cm
【答案】分析:利用切線的概念,直徑對的圓周角是直角,平行線的判定和性質,勾股定理求解.
解答:解:連接O2C,PH,AP是直徑,
則∠AHP=90°,
由切線的概念知,∠O2CA=90°;
∴PH∥O2C,
由勾股定理得,AC=6,
∵HP:O2C=AP:O2A,
∴HP=2,
由勾股定理得,AH=4,HC=AC-AH=2,
在直角三角形PHC中,由勾股定理得,PC=2
故選A.
點評:本題考查了切線的性質和勾股定理的靈活運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圖形的平移》(01)(解析版) 題型:解答題

(2005•武漢)如圖,在平面直角坐標系中,點O1的坐標為(-4,0),以點O1為圓心,8為半徑的圓與x軸交于A、B兩點,過點A作直線l與x軸負方向相交成60°角.以點O2(13,5)為圓心的圓與x軸相切于點D.

(1)求直線l的解析式;
(2)將⊙O2以每秒1個單位的速度沿x軸向左平移,同時直線l沿x軸向右平移,當⊙O2第一次與⊙O1相切時,直線l也恰好與⊙O2第一次相切,求直線l平移的速度;
(3)將⊙O2沿x軸向右平移,在平移的過程中與x軸相切于點E,EG為⊙O2的直徑,過點A作⊙O2的切線,切⊙O2于另一點F,連接AO2、FG,那么FG•AO2的值是否會發(fā)生變化?如果不變,說明理由并求其值;如果變化,求其變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2005•武漢)如圖,隧道的截面由拋物線AED和矩形ABCD構成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標系.y軸是拋物線的對稱軸,頂點E到坐標原點O的距離為6m.
(1)求拋物線的解析式;
(2)如果該隧道內(nèi)設雙行道,現(xiàn)有一輛貨運卡車高4.2m,寬2.4米,這輛貨運卡車能否通過該隧道?通過計算說明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年文星鎮(zhèn)中考模擬試卷(解析版) 題型:解答題

(2005•武漢)如圖,在平面直角坐標系中,點O1的坐標為(-4,0),以點O1為圓心,8為半徑的圓與x軸交于A、B兩點,過點A作直線l與x軸負方向相交成60°角.以點O2(13,5)為圓心的圓與x軸相切于點D.

(1)求直線l的解析式;
(2)將⊙O2以每秒1個單位的速度沿x軸向左平移,同時直線l沿x軸向右平移,當⊙O2第一次與⊙O1相切時,直線l也恰好與⊙O2第一次相切,求直線l平移的速度;
(3)將⊙O2沿x軸向右平移,在平移的過程中與x軸相切于點E,EG為⊙O2的直徑,過點A作⊙O2的切線,切⊙O2于另一點F,連接AO2、FG,那么FG•AO2的值是否會發(fā)生變化?如果不變,說明理由并求其值;如果變化,求其變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年湖北省武漢市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•武漢)如圖,隧道的截面由拋物線AED和矩形ABCD構成,矩形的長BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標系.y軸是拋物線的對稱軸,頂點E到坐標原點O的距離為6m.
(1)求拋物線的解析式;
(2)如果該隧道內(nèi)設雙行道,現(xiàn)有一輛貨運卡車高4.2m,寬2.4米,這輛貨運卡車能否通過該隧道?通過計算說明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年湖北省武漢市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•武漢)如圖,在平面直角坐標系中,點O1的坐標為(-4,0),以點O1為圓心,8為半徑的圓與x軸交于A、B兩點,過點A作直線l與x軸負方向相交成60°角.以點O2(13,5)為圓心的圓與x軸相切于點D.

(1)求直線l的解析式;
(2)將⊙O2以每秒1個單位的速度沿x軸向左平移,同時直線l沿x軸向右平移,當⊙O2第一次與⊙O1相切時,直線l也恰好與⊙O2第一次相切,求直線l平移的速度;
(3)將⊙O2沿x軸向右平移,在平移的過程中與x軸相切于點E,EG為⊙O2的直徑,過點A作⊙O2的切線,切⊙O2于另一點F,連接AO2、FG,那么FG•AO2的值是否會發(fā)生變化?如果不變,說明理由并求其值;如果變化,求其變化范圍.

查看答案和解析>>

同步練習冊答案