【題目】我們定義:如圖,在△中,把繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)得到,把繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)得到,連接,當(dāng)時(shí),我們稱△是△的“旋補(bǔ)三角形”,△邊上的中線叫做的“旋補(bǔ)中線”,點(diǎn)叫做“旋補(bǔ)中心”.
⑴ 特例感知:在如圖、如圖中,是的“旋補(bǔ)三角形”,是的“旋補(bǔ)中線”.
① 如圖,當(dāng)為等邊三角形時(shí),與的數(shù)量關(guān)系為= ;
② 如圖,當(dāng),時(shí),則長為 .
⑵ 精確作圖:如圖,已知在四邊形內(nèi)部存在點(diǎn),使得是的“旋補(bǔ)三角形”(點(diǎn)D的對應(yīng)點(diǎn)為點(diǎn)A,點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)B),請用直尺和圓規(guī)作出點(diǎn)(要求:保留作圖痕跡,不寫作法和證明)
⑶ 猜想論證:在如圖中,當(dāng)△為任意三角形時(shí),猜想與的數(shù)量關(guān)系,并給予證明.
【答案】⑴ ① ② 4;⑵ 作圖見解析;⑶ ;見解析.
【解析】
(1)①首先證明△ADB′是含有30°是直角三角形,可得,即可解決問題;
②首先證明△BAC≌△B′AC′,根據(jù)直角三角形斜邊中線定理即可解決問題;
(2)作線段AD、BC的垂直平分線,交點(diǎn)即為點(diǎn)P.
(3)結(jié)論:.如圖1中,延長AD到M,使得AD=DM,連接E′M,C′M,首先證明四邊形AC′MB′是平行四邊形,再證明△BAC≌△AB′M,即可解決問題;
⑴ ①如圖2,當(dāng)△ABC為等邊三角形時(shí),AD與BC的數(shù)量關(guān)系為;
理由:∵△ABC是等邊三角形,
∴AB=BC=AC=AB′=AC′,
∵DB′=DC′,
∴AD⊥B′C′,
∵
∴
∴
∴
故答案為: .
②如圖3,當(dāng),BC=8時(shí),則AD長為4.
理由:∵
∴
∵AB=AB′,AC=AC′,
∴△BAC≌△B′AC′,
∴BC=B′C′,
∵B′D=DC′,
∴
故答案為:4.
⑵如圖所示:(作線段AD、BC的垂直平分線,交點(diǎn)即為點(diǎn)P)
∴點(diǎn)P即為所求.
⑶
證明:理由:如圖1中,延長AD到M,使得AD=DM,連接E′M
∵B′D=DC′,AD=DM,
∴四邊形AC′MB′是平行四邊形,
∴AC′=B′M=AC,
∵
∴∠BAC=∠MB′A,
∵AB=AB′,
∴△BAC≌△AB′M,
∴BC=AM,
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O在直線AB上,OC⊥AB,△ODE中,∠ODE=90°,∠EOD=60°,先將△ODE一邊OE與OC重合,然后繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),當(dāng)OE與OB重合時(shí)停止旋轉(zhuǎn).
(1)當(dāng)OD在OA與OC之間,且∠COD=20°時(shí),則∠AOE=______;
(2)試探索:在△ODE旋轉(zhuǎn)過程中,∠AOD與∠COE大小的差是否發(fā)生變化?若不變,請求出這個(gè)差值;若變化,請說明理由;
(3)在△ODE的旋轉(zhuǎn)過程中,若∠AOE=7∠COD,試求∠AOE的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災(zāi),“旱災(zāi)無情人有情”.某單位給某鄉(xiāng)中小學(xué)捐獻(xiàn)一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運(yùn)往該鄉(xiāng)中小學(xué).已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運(yùn)輸部門安排甲、乙兩種貨車時(shí)有幾種方案?請你幫助設(shè)計(jì)出來;
(3)在(2)的條件下,如果甲種貨車每輛需付運(yùn)費(fèi)400元,乙種貨車每輛需付運(yùn)費(fèi)360元.運(yùn)輸部門應(yīng)選擇哪種方案可使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD垂直平分OB于點(diǎn)E,點(diǎn)F在AB延長線上,∠AFC=30°.
(1)求證:CF為⊙O的切線.
(2)若半徑ON⊥AD于點(diǎn)M,CE=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點(diǎn)D,E,BD=CD,過點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為5,∠CDF=30°,求的長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點(diǎn)F,∠ABC的平分線交AD于點(diǎn)E,連接BD,CD.
(1)求證:BD=CD;
(2)請判斷B,E,C三點(diǎn)是否在以D為圓心,以DB為半徑的圓上?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是高,CE是中線,點(diǎn)G是CE的中點(diǎn),且DG⊥CE,垂足為點(diǎn)G.
(1)求證:DC=BE;
(2)若∠AEC=54°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的邊AB長為4cm,DE平分∠ADC,若∠B=80°,∠DAE=50°,求平行四邊形ABCD的周長?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com