【題目】如圖,在直角坐標(biāo)系中,以點P為圓心的圓弧與x軸交于A,B兩點,已知P(4,2)和A(2,0),則點B的坐標(biāo)是 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B,C重合),現(xiàn)將△PCD沿直線PD折疊,使點C落下點C1處;作∠BPC1的平分線交AB于點E.設(shè)BP=x,BE=y,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O在直線AB上,OC⊥AB,△ODE中,∠ODE=90°,∠EOD=60°,先將△ODE一邊OE與OC重合,然后繞點O順時針方向旋轉(zhuǎn),當(dāng)OE與OB重合時停止旋轉(zhuǎn).
(1)當(dāng)OD在OA與OC之間,且∠COD=20°時,則∠AOE=______;
(2)試探索:在△ODE旋轉(zhuǎn)過程中,∠AOD與∠COE大小的差是否發(fā)生變化?若不變,請求出這個差值;若變化,請說明理由;
(3)在△ODE的旋轉(zhuǎn)過程中,若∠AOE=7∠COD,試求∠AOE的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)同解一道題目:“如圖,F(xiàn)、G是直線AB上的兩點,D是AC上的一點,且DF∥CB,∠E=∠C,請寫出與△ABC相似的三角形,并加以證明”. 甲同學(xué)的解答得到了老師的好評.
乙同學(xué)的解答是這樣的:“與△ABC相似的三角形只有△AFD,證明如下:
∵DF∥CB,
∴△AFD∽△ABC.”
乙同學(xué)的解答正確嗎?若不正確,請你改正.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個三角形和一個矩形按照如圖的方式擴(kuò)大,使他們的對應(yīng)邊之間的距離均為1,得到新的三角形和矩形,下列說法正確的是 ( )
A.新三角形與原三角形相似
B.新矩形與原矩形相似
C.新三角形與原三角形、新矩形與原矩形都相似
D.都不相似
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級社會實踐小組去某商場調(diào)查商品的銷售情況,了解到該商場以每件80元的價格購進(jìn)了某品牌襯衫500件,并以每件120元的價格銷售了400件,商場準(zhǔn)備采取促銷措施,將剩下的襯衫降價銷售.
(1)每件襯衫降價多少元時,銷售完這批襯衫正好達(dá)到盈利45%的預(yù)期目標(biāo)?
(2)某公司給員工發(fā)福利,在該商場促銷錢購買了20件該品牌的襯衫發(fā)給員工,后因為有新員工加入,又要購買5件該襯衫,購買這5件襯衫時恰好趕上該商場進(jìn)行促銷活動,求該公司購買這25件襯衫的平均價格.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點,直線與兩坐標(biāo)軸分別交于A,B兩點點D,E分別是OB,AB上的動點,則周長的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:若,求m、n的值.
解:∵,
∴
∴ ,而,,
∴ 且,
∴n=4,m=4.
根據(jù)你的觀察,探究下面的問題:
(1),則a=______;b=_________.
(2)已知△ABC的三邊a,b,c滿足=0,
關(guān)于此三角形的形狀的以下命題:①它是等邊三角形;②它屬于等腰三角形:③它屬于銳角三角形;④它不是直角三角形.其中所有正確命題的序號為________________.
(3)已知△ABC的三邊長a、b、c都是正整數(shù),且,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科學(xué)研究發(fā)現(xiàn),空氣含氧量y(克/立方米)與海拔高度x(米)之間近似地滿足一次函數(shù)關(guān)系.經(jīng)測量,在海拔高度為1000米的地方,空氣含氧量約為267克/立方米;在海拔高度為2000米的地方,空氣含氧量約為235克/立方米.
(1)求出y與x的函數(shù)表達(dá)式;
(2)求出海拔高度為0米的地方的空氣含氧量.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com