【題目】如圖,△ABC中,A1,A2,A3,…,An為AC邊上不同的n個點,首先連接BA1,圖中出現(xiàn)了3個不同的三角形,再連接BA2,圖中便有6個不同的三角形,……
(1)完成下表:
連接個數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)三角形個數(shù) | 3 | 6 |
(2)若出現(xiàn)了45個三角形,則共連接了_____個點?若一直連接到An,則圖中共有______個三角形.
【答案】(1),,,;(2)8,.
【解析】
(1)根據(jù)圖形,可以數(shù)三角形的個數(shù),其實就是數(shù)AC上線段的個數(shù),當1個分點時,有三角形數(shù)為,當2個分點時,有三角形數(shù)為,由此可找出規(guī)律,據(jù)此即可得答案;
(2)由(1)繼續(xù)推導(dǎo)可解得若出現(xiàn)了45個三角形,若一直連接到An,由個分點,三角形數(shù)量為前一個分點數(shù)的三角形總數(shù)加個,可知個分點,則有個三角形.
(1)由圖形可得:數(shù)三角形的個數(shù),其實就是數(shù)AC上線段的個數(shù).
所以當1個分點時,有三角形數(shù)為;
2個分點時,有三角形數(shù)為;
3個分點時,有;
4個分點時,有;
5個分點時,有;
6個分點時,有;
(2)若出現(xiàn)45=1+2+3+4+5+6+7+8+9個三角形,根據(jù)上述規(guī)律,則有8個分點;
若有個分點,則有.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 A、B 兩點的坐標分別為(﹣2,0)、(0,1),⊙C 的圓心坐標為(0,﹣1),半徑為 1,E 是⊙C 上的一動點,則△ABE 面積的最大值為( )
A. B. 3+ C. 3+ D. 4+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在七年級設(shè)立了六個課外興趣小組,每個參加者只能參加一個興趣小組,下面是六個興趣小組不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖.根據(jù)圖中信息,解決下列問題:
(1)七年級共有 人參加了興趣小組;
(2)體育興趣小組對應(yīng)扇形圓心角的度數(shù)為 ;
(3)以各小組人數(shù)組成一組新數(shù)據(jù),求這組新數(shù)據(jù)的中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)(為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點.
(1)求一次函數(shù)的表達式;
(2)若將直線向下平移個單位長度后與反比例函數(shù)的圖像有且只有一個公共點,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,已知正方形ABCD在直線MN的上方,BC在直線MN上,E是BC上一點,以AE為邊在直線MN的上方作正方形AEFG.
(1)連接GD,求證:△ADG≌△ABE;
(2)連接FC,觀察并猜測∠FCN的度數(shù)是否總保持不變,
若∠FCN的大小保持不變,請說明理由;
若∠FCN的大小發(fā)生改變,請舉例說明;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=100°,∠BCD=70°,點M,N分別在AB,BC上,將△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)興趣小組開展了一次課外活動,過程如下:如圖①,正方形ABCD中,AB=4,將三角板放在正方形ABCD上,使三角板的直角頂點與D點重合.三角板的一邊交AB于點P,另一邊交BC的延長線于點Q.
(1)求證:AP=CQ;
(2)如圖②,小明在圖1的基礎(chǔ)上作∠PDQ的平分線DE交BC于點E,連接PE,他發(fā)現(xiàn)PE和QE存在一定的數(shù)量關(guān)系,請猜測他的結(jié)論并予以證明;
(3)在(2)的條件下,若AP=1,求PE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6cm,射線AG∥BC,點E從點A出發(fā)沿射線AG以1cm/s的速度運動,點F從點B出發(fā)沿射線BC以2cm/s的速度運動.如果點E、F同時出發(fā),設(shè)運動時間為t(s)當t=______s時,以A、C、E、F為頂點四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩條線段AC和BC,連接AB,分別以AB、BC為底邊向上畫等腰△ABD和等腰△BCE,∠ADB=∠BEC=α.
(1)如圖1,當α=60°時,求證:△DBE≌△ABC;
(2)如圖2,當α=90°時,且BC=5,AC=2.
①求DE的長;
②如圖3,將線段CA繞點C旋轉(zhuǎn),點D也隨之運動,請求出C,D兩點之間距離的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com