如圖,矩形ABCD,對角線AC、BD交于點O,CE∥BD,DE∥AC,CE與DE交于點E,那么DC與OE有什么樣的位置關(guān)系?請說明理由.

解:OE⊥CD.
證明:∵DE∥AC,CE∥BD,
∴四邊形OCED是平行四邊形.
∵ABCD是矩形,∴OC=OD.
∴四邊形OCED是菱形,
∴OE⊥CD.
分析:OE⊥DC,可先證四邊形OCED是菱形.由DE∥AC,CE∥BD,可得四邊形OCED是平行四邊形;又因為ABCD是矩形,所以O(shè)C=OD.有一組鄰邊相等的平行四邊形是菱形.
點評:此題主要考查菱形的判定:有一組鄰邊相等的平行四邊形是菱形,綜合利用了矩形和菱形的性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,矩形ABCD中,AC與BD相交于點O,BE⊥AC于E,CF⊥BD于F.
求證:BE=CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•武漢)如圖,矩形ABCD中,點E在邊AB上,將矩形ABCD沿直線DE折疊,點A恰好落在邊BC的點F處.若AE=5,BF=3,則CD的長是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•黃岡)如圖,矩形ABCD中,AB=4,BC=3,邊CD在直線l上,將矩形ABCD沿直線l作無滑動翻滾,當點A第一次翻滾到點A1位置時,則點A經(jīng)過的路線長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動,設(shè)運動時間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)若△PBQ的面積為18cm2,求運動時間;
(3)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,矩形ABCD的邊AB、BC的長分別為4
3
cm和2
6
cm,E、F、G、H分別是矩形各邊的中點,求四邊形EFGH的周長和面積.

查看答案和解析>>

同步練習冊答案