在△ABC中,點(diǎn)D、E分別在AB、AC上,且DE//BC,,則SADE:SABC=_____________
4:9 

試題分析:

依題意知,DE∥BC,可證明△ADE∽△ABC。過(guò)點(diǎn)A做AN⊥BC。垂足為N。則可得AM⊥DE。垂足為點(diǎn)M。已知,則AM:AN=AD:AB=2:3
故SADE:SABC=
點(diǎn)評(píng):本題難度較低,主要考查學(xué)生對(duì)相似三角形性質(zhì)知識(shí)點(diǎn)的掌握。相似三角形中對(duì)應(yīng)邊與對(duì)應(yīng)高成比例。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知四邊形ABCD是平行四邊形,DE⊥AB,DF⊥BC,垂足分別是E、F,并且DE=DF.求證:

(1)△ADE≌△CDF;
(2)四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩個(gè)共一個(gè)頂點(diǎn)的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,連接AF,M是AF的中點(diǎn),連接MB、ME.

(1)如圖1,當(dāng)CB與CE在同一直線上時(shí),求證:MB∥CF;
(2)如圖1,若CB=a,CE=2a,求BM,ME的長(zhǎng);
(3)如圖2,當(dāng)∠BCE=45°時(shí),求證:BM=ME.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在△ABC中,∠C=90°,AB=7,BC=5,則邊AC的長(zhǎng)為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC。

理由如下:
 AD⊥BC于D,EG⊥BC于G,(已知)
 ∠ADC=∠EGC=90°,(          )
  AD‖EG,(                      )
 ∠1=∠2,(                     ) 
   =∠3,(兩直線平行,同位角相等)
∠E=∠1(已知)
     =   (等量代換)                          
 AD平分∠BAC(         )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若等腰三角形兩條邊的長(zhǎng)分別是11cm和23cm,則該三角形的周長(zhǎng)是____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在中,是邊的中點(diǎn),過(guò)點(diǎn)O的直線分割成兩個(gè)部分,若其中的一個(gè)部分與相似,則滿足條件的直線共有___條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

小明和小方分別設(shè)計(jì)了一種求n邊形的內(nèi)角和(n-2)×180°(n為大于2的整數(shù))的方案:

(1)小明是在n邊形內(nèi)取一點(diǎn)P,然后分別連結(jié)PA1、PA2、…、PAn(如圖1);
(2)小紅是在n邊形的一邊A1A2上任取一點(diǎn)P,然后分別連結(jié)PA4、PA5、…、PA1(如圖2).
請(qǐng)你評(píng)判這兩種方案是否可行?如果不行的話,請(qǐng)你說(shuō)明理由;如果可行的話,請(qǐng)你沿著方案的設(shè)計(jì)思路把多邊形的內(nèi)角和求出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖:正方形BCEF的面積為9,AD=13,BD=12,則AE的長(zhǎng)為(  )
A.3     B.4   C.5     D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案