【題目】如圖1,邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E在AB邊上(不與點(diǎn)A,B重合),點(diǎn)F在BC邊上(不與點(diǎn)B,C重合).
第一次操作:將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E落在正方形上時(shí),記為點(diǎn)G;
第二次操作:將線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)F落在正方形上時(shí),記為點(diǎn)H;依次操作下去…
(1)圖2中的△EFD是經(jīng)過(guò)兩次操作后得到的,其形狀為 ,
(2)若經(jīng)過(guò)三次操作可得到四邊形EFGH.
①請(qǐng)判斷四邊形EFGH的形狀為 ,此時(shí)AE與BF的數(shù)量關(guān)系是 ;
②以①中的結(jié)論為前提,設(shè)AE的長(zhǎng)為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍。
【答案】(1)等邊三角形;(2)正方形;AE=BF; =2(x-2)2+8,8≤y<16.
【解析】
試題分析:(1)由旋轉(zhuǎn)性質(zhì),易得△EFD是等邊三角形;利用等邊三角形的性質(zhì)、勾股定理求出EF的長(zhǎng);
(2)①四邊形EFGH的四邊長(zhǎng)都相等,所以是正方形;利用三角形全等證明AE=BF;
②求面積y的表達(dá)式,這是一個(gè)二次函數(shù),利用二次函數(shù)性質(zhì)求出最值及y的取值范圍.
試題解析:(1)如題圖2,由旋轉(zhuǎn)性質(zhì)可知EF=DF=DE,則△DEF為等邊三角形.
在Rt△ADE與Rt△CDF中,
∴Rt△ADE≌Rt△CDF(HL)
∴AE=CF.
設(shè)AE=CF=x,則BE=BF=4-x
∴△BEF為等腰直角三角形.
∴EF=BF=(4-x).
∴DE=DF=EF=(4-x).
在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x+42=[(4-x]2,
解得:x1=8-4,x2=8+4(舍去)
∴EF=(4-x)=4-4.
DEF的形狀為等邊三角形,EF的長(zhǎng)為4-4.
(2)①四邊形EFGH的形狀為正方形,此時(shí)AE=BF.理由如下:
依題意畫(huà)出圖形,如答圖1所示:
由旋轉(zhuǎn)性質(zhì)可知,EF=FG=GH=HE,∴四邊形EFGH的形狀為正方形.
∵∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3.
∵∠3+∠4=90°,∠2+∠3=90°,
∴∠2=∠4.
在△AEH與△BFE中,
∴△AEH≌△BFE(ASA)
∴AE=BF.
②利用①中結(jié)論,易證△AEH、△BFE、△CGF、△DHG均為全等三角形,
∴BF=CG=DH=AE=x,AH=BE=CF=DG=4-x.
∴y=S正方形ABCD-4S△AEH=4×4-4×x(4-x)=2x2-8x+16.
∴y=2x2-8x+16(0<x<4)
∵y=2x2-8x+16=2(x-2)2+8,
∴當(dāng)x=2時(shí),y取得最小值8;當(dāng)x=0時(shí),y=16,
∴y的取值范圍為:8≤y<16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,不能判斷四邊形ABCD是平行四邊形的是( )
A.AB∥DC,AD=BC
B.AB∥DC,AD∥BC
C.AB=DC,AD=BC
D.OA=OC,OB=OD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨州市尚市“桃花節(jié)”觀賞人數(shù)逐年增加,據(jù)有關(guān)部門(mén)統(tǒng)計(jì),2014年約為20萬(wàn)人次,2016年約為28.8萬(wàn)人次,設(shè)觀賞人數(shù)年均增長(zhǎng)率為x,則下列方程中正確的是( )
A.20(1+2x)=28.8
B.28.8(1+x)2=20
C.20(1+x)2=28.8
D.20+20(1+x)+20(1+x)2=28.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC, BAC=40°,將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)100°得到△ADE,連接BD,CE交于點(diǎn)F.
(1)求證:△ABD≌△ACE;
(2)求證:四邊形ABFE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(﹣2)4表示的意義是( )
A. (﹣2)×4 B. 2×(﹣4)
C. (﹣4)×(﹣4) D. (﹣2)×(﹣2)×(﹣2)×(﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),B點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3)
(1)求拋物線的解析式;
(2)點(diǎn)P在拋物線位于第四象限的部分上運(yùn)動(dòng),當(dāng)四邊形ABPC的面積最大時(shí),求點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.
(3)直線l經(jīng)過(guò)A、C兩點(diǎn),點(diǎn)Q在拋物線位于y軸左側(cè)的部分上運(yùn)動(dòng),直線m經(jīng)過(guò)點(diǎn)B和點(diǎn)Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC是一塊等邊三角形場(chǎng)地,點(diǎn)D,E分別是AC,BC邊上靠近C點(diǎn)的三等分點(diǎn).現(xiàn)有一個(gè)機(jī)器人(點(diǎn)P)從A點(diǎn)出發(fā)沿AB邊運(yùn)動(dòng),觀察員選擇了一個(gè)固定的位置記錄機(jī)器人的運(yùn)動(dòng)情況.設(shè)AP=x,觀察員與機(jī)器人之間的距離為y,若表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則觀察員所處的位置可能是圖1的( )
A. 點(diǎn)B B. 點(diǎn)C C. 點(diǎn)D D. 點(diǎn)E
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰三角形周長(zhǎng)為36cm,兩邊長(zhǎng)之比為4:1,則底邊長(zhǎng)為( )
A. 16cm B. 4cm C. 20cm D. 16cm或4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(0,4),點(diǎn)M是線段AB上任意一點(diǎn)(A,B兩點(diǎn)除外)。
(1)求直線AB的解析式;
(2)過(guò)點(diǎn)M分別作MC⊥OA于點(diǎn)C,MD⊥OB于點(diǎn)D,當(dāng)點(diǎn)M在AB上運(yùn)動(dòng)時(shí),你認(rèn)為四邊形OCMD的周長(zhǎng)是否發(fā)生變化?并說(shuō)明理由;
(3)當(dāng)點(diǎn)M把線段AB分成的兩部分的比為1:3時(shí),請(qǐng)求出點(diǎn)M的坐標(biāo)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com