如果兩個相似三角形的相似比是2:3,那么它們的周長比是       
2:3.

試題分析:根據(jù)相似三角形的性質:周長比等于相似比即可解得.
∵兩個相似三角形的相似比為2:3,
∴它們的周長比為2:3.
考點:相似三角形的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在中,,,.求證:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,E為CD上一點,連結AE,BD,且AE,BD交于點F,SDEF∶SABF=4∶25,求DE∶EC的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若兩個三角形的相似比為2∶3,則這兩個三角形周長的比為           

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).動點M,N同時從B點出發(fā),分別沿B?A,B?C運動,速度是1厘米/秒.過M作直線垂直于AB,分別交AN,CD于P,Q.當點N到達終點C時,點M也隨之停止運動.設運動時間為t秒.

(1)若a=4厘米,t=1秒,則PM= _________ 厘米;
(2)若a=5厘米,求時間t,使△PNB∽△PAD,并求出它們的相似比;
(3)若在運動過程中,存在某時刻使梯形PMBN與梯形PQDA的面積相等,求a的取值范圍;
(4)是否存在這樣的矩形:在運動過程中,存在某時刻使梯形PMBN,梯形PQDA,梯形PQCN的面積都相等?若存在,求a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=4,AD=10.一把三角尺的直角頂點P在AD上滑動時(點P與A、D不重合),一直角邊始終經過點C,另一直角邊與AB交于點E.

(1)證明△DPC∽△AEP;
(2)當∠CPD=30°時,求AE的長;
(3)是否存在這樣的點P,使△DPC的周長等于△AEP周長的倍?若存在,求出DP的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知等腰△ABC的面積為16cm2,點D,E分別是AB,AC邊的中點,則梯形DBCE的面積為___     ___cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖:在△ABC中,點D、E分別在AB、AC上,∠ADE=∠C,且AD∶AC=2∶3,那么DE∶BC等于(   )

A.3∶1      B.1∶3            C.3∶4     D.2∶3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列說法正確的是(     ).
A.三角形的重心是三角形三邊垂直平分線的交點.
B.三角形的一條中位線與第三邊上的中線互相平分.
C.坡面的水平長度與鉛垂高度的比是坡比
D.相似三角形對應高的比等于相似比的平方.

查看答案和解析>>

同步練習冊答案