【題目】如圖,某水平地面上建筑物的高度為AB,在點D和點F處分別豎立高是2米的標桿CD和EF,兩標桿相隔52米,并且建筑物AB,標桿CD和EF在同一豎直平面內(nèi),從標桿CD后退2米到點G處,在G處測得建筑物頂端A和標桿頂端C在同一條直線上;從標桿FE后退4米到點H處,在H處測得建筑物頂端A和標桿頂端E在同一條直線上,求建筑物的高.
【答案】解:∵AB⊥BH,CD⊥BH,EF⊥BH,
∴AB∥CD∥EF,
∴△CDG∽△ABG,△EFH∽△ABH,
∴ = , = ,
∵CD=DG=EF=2m,DF=52m,F(xiàn)H=4m,
∴ = ,
= ,
∴ = ,
解得BD=52,
∴ = ,
解得AB=54.
答:建筑物的高為54米
【解析】首先由AB∥CD∥EF可得出△CDG∽△ABG,△EFH∽△ABH,再根據(jù)相似三角形的對應邊成比例列出比例式求解即可.
【考點精析】本題主要考查了相似三角形的應用的相關知識點,需要掌握測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構(gòu)造相似三角形求解才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】某市為提高學生參與體育活動的積極性,圍繞“你喜歡的體育運動項目(只寫一項)”這一問題,對初一新生進行隨機抽樣調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖(不完整).
請你根據(jù)圖中提供的信息解答下列問題:
(1)本次抽樣調(diào)查一共調(diào)查調(diào)查了多少名學生?
(2)根據(jù)條形統(tǒng)計圖中的數(shù)據(jù),求扇形統(tǒng)計圖中“最喜歡足球運動”的學生數(shù)對應扇形的圓心角度數(shù).
(3)請將條形圖補充完整.
(4)若該市2017年約有初一新生21000人,請你估計全市本屆學生中“最喜歡足球運動”的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上的三點A、B、C,點A表示的數(shù)為5,點B表示的數(shù)為-3,點C到點A、點B的距離相等,動點P從點A出發(fā),以每秒2個單位長度的速度沿數(shù)軸向左勻速運動,設運動時間為t秒.
(1)點C在數(shù)軸上表示的數(shù)是______;
(2)當t=______秒時,點P到達點B處:
(3)用含字母t的代數(shù)式表示線段AP=______;點P在數(shù)軸上表示的數(shù)是______.
(4)當P,C之間的距離為1個單位長度時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為倡導綠色出行,平陽縣在昆陽鎮(zhèn)設立了公共自行車服務站點,小明對某站點公共自行車的租用情況進行了調(diào)查,將該站點一天中市民每次租用公共自行車的時間t(單位:分)(t≤120)分成A,B,C,D四個組進行各組人次統(tǒng)計,并繪制了如下的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
(1)該站點一天中租用公共自行車的總?cè)舜螢?/span> , 表示A的扇形圓心角的度數(shù)是 .
(2)補全條形統(tǒng)計圖.
(3)考慮到公共自行車項目是公益服務,公共自行車服務公司規(guī)定:市民每次使用公共自行收費2元,已知昆陽鎮(zhèn)每天租用公共自行車(時間在2小時以內(nèi))的市民平均有5000人次,據(jù)此估計公共自行車服務公司每天可收入多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將直角△ABC沿斜邊AC的方向平移到△DEF的位置,,ED交BC于點G,BG=4,EF=10,△BEG的面積為4,下列結(jié)論:①∠A=∠BED;②△ABC平移的距離是4;③BE=CF;④四邊形GCFE的面積為16,正確的有( )
A. ②③B. ①②③C. ①③④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應黨的“文化自信”號召,某校開展了古詩詞誦讀大賽活動,現(xiàn)隨機抽取部分同學的成績進行統(tǒng)計,并繪制成如下的兩個不完整的統(tǒng)計圖,請結(jié)合圖中提供的信息,解答下列問題:
(1)_____,并把頻數(shù)分布直方圖補充完整;
(2)求扇形的圓心角度數(shù),成績眾數(shù)落在多少分之間;
(3)如果全校有2000名學生參加這次活動,90分以上(含90分)為優(yōu)秀,那么估計獲得優(yōu)秀獎的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B,C重合),現(xiàn)將△PCD沿直線PD折疊,使點C落下點C1處;作∠BPC1的平分線交AB于點E.設BP=x,BE=y,那么y關于x的函數(shù)圖象大致應為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O在直線AB上,OC⊥AB,△ODE中,∠ODE=90°,∠EOD=60°,先將△ODE一邊OE與OC重合,然后繞點O順時針方向旋轉(zhuǎn),當OE與OB重合時停止旋轉(zhuǎn).
(1)當OD在OA與OC之間,且∠COD=20°時,則∠AOE=______;
(2)試探索:在△ODE旋轉(zhuǎn)過程中,∠AOD與∠COE大小的差是否發(fā)生變化?若不變,請求出這個差值;若變化,請說明理由;
(3)在△ODE的旋轉(zhuǎn)過程中,若∠AOE=7∠COD,試求∠AOE的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com