甲、乙、丙三位同學參加朗誦比賽,約定用擲硬幣的方法確定出場的次序.將兩枚硬幣同時上拋,落地后,若都是正面朝上,則甲首先出場;若都是反面朝上,則乙首先出場;若一正一反,則丙首先出場.在確定了第一個出場者(已確定丙第一個出場)之后,再將一枚硬幣上拋,落地后,若正面朝上,則甲第二,乙第三;若反面朝上,則乙第二,甲第三.

同學們,他們用這種方法確定出場次序是否公平?為什么?

答案:
解析:

不公平,問題出在確定第一個出場人選上.因為出現(xiàn)一正一反的可能性比均正或均反的可能性大.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

7、在社會實踐活動中,某校甲、乙、丙三位同學一同調(diào)查了高峰時段某市的一環(huán)路、二環(huán)路、三環(huán)路的車流量(每小時通過觀測點的汽車車輛數(shù)),三位同學匯報高峰時段的車流量情況如下:
甲同學說:“一環(huán)路車流量為每小時4000輛”;
乙同學說:“三環(huán)路比二環(huán)路車流量每小時多800輛”;
丙同學說:“二環(huán)路車流量的3倍與三環(huán)路車流量的差是一環(huán)路車流量的2倍”.
請你根據(jù)他們所提供的信息,求出高峰時段二環(huán)路、三環(huán)路的車流量分別是多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、甲、乙、丙三位同學進行數(shù)字游戲:甲說一個數(shù)a的相反數(shù)就是它本身,乙說一個數(shù)b的倒數(shù)也等于它本身,丙說一個數(shù)c的絕對值等于2,請你猜一猜|a-b+c|=
1或3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•溫州)某校舉辦八年級學生數(shù)學素養(yǎng)大賽,比賽共設四個項目:七巧板拼圖,趣題巧解,數(shù)學應用,魔方復原,每個項目得分都按一定百分比折算后記入總分,下表為甲,乙,丙三位同學得分情況(單位:分)
   七巧板拼圖  趣題巧解  數(shù)學應用  魔方復原
 甲  66  89  86  68
 乙  66  60  80  68
 丙  66  80  90  68
(1)比賽后,甲猜測七巧板拼圖,趣題巧解,數(shù)學應用,魔方復原這四個項目得分分別按10%,40%,20%,30%折算△記入總分,根據(jù)猜測,求出甲的總分;
(2)本次大賽組委會最后決定,總分為80分以上(包含80分)的學生獲一等獎,現(xiàn)獲悉乙,丙的總分分別是70分,80分.甲的七巧板拼圖、魔方復原兩項得分折算后的分數(shù)和是20分,問甲能否獲得這次比賽的一等獎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某校七年級學生到野外活動,為測量一池塘兩端A,B的距離,甲、乙、丙三位同學分別設計出如下幾種方案:

甲:如圖①,先在平地取一個可直接到達A,B的點C,再連接AC,BC,并分別延長AC至D,BC至E,使DC=AC,EC=BC,最后測出DE的長即為A,B的距離.
乙:如圖②,先過點B作AB的垂線BF,再在BF上取C,D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于點E,則測出DE的長即為A,B的距離.
丙:如圖③,過點B作BD⊥AB,再由點D觀測,在AB的延長線上取一點C,使∠BDC=∠BDA,這時只要測出BC的長即為A,B的距離.
(1)以上三位同學所設計的方案,可行的有
甲、乙、丙
甲、乙、丙

(2)請你選擇一可行的方案,說說它可行的理由.

查看答案和解析>>

同步練習冊答案