如圖,在平面直角坐標系中,直線:y=-2x+b (b≥0)的位置隨b的不同取值而變化.

    (1)已知⊙M的圓心坐標為(4,2),半徑為2.

    當b=    時,直線:y=-2x+b (b≥0)經(jīng)過圓心M:

    當b=    時,直線:y=-2x+b(b≥0)與OM相切:

    (2)若把⊙M換成矩形ABCD,其三個頂點坐標分別為:A(2,0)、B(6,0)、C(6,2).

設直線掃過矩形ABCD的面積為S,當b由小到大變化時,請求出S與b的函數(shù)關系式,

 

【答案】

解:(1)10;

(2)由A(2,0)、B(6,0)、C(6,2),根據(jù)矩形的性質(zhì),得D(2,2)。

如圖,當直線經(jīng)過A(2,0)時,b=4;當直線經(jīng)過D(2,2)時,b=6;當直線經(jīng)過B(6,0)時,b=12;當直線經(jīng)過C(6,2)時,b=14。

當0≤b≤4時,直線掃過矩形ABCD的面積S為0。

當4<b≤6時,直線掃過矩形ABCD的面積S為△EFA的面積(如圖1),

在 y=-2x+b中,令x=2,得y=-4+b,則E(2,-4+b),

令y=0,即-2x+b=0,解得x=,則F(,0)。

∴AF=,AE=-4+b。

∴S=

當6<b≤12時,直線掃過矩形ABCD的面積S為直角梯形DHGA的面積(如圖2),

在 y=-2x+b中,令y=0,得x=,則G(,0),

令y=2,即-2x+b=2,解得x=,則H(,2)。

∴DH=,AG=。AD=2

∴S=。

當12<b≤14時,直線掃過矩形ABCD的面積S為五邊形DMNBA的面積=矩形ABCD的面積-△CMN的面積(如圖3)

在 y=-2x+b中,令y=2,即-2x+b=2,解得x=,則M(,0),

令x=6,得y=-12+b,,則N(6,-12+b)。

∴MC=,NC=14-b。

∴S=

當b>14時,直線掃過矩形ABCD的面積S為矩形ABCD的面積,面積為民8。

綜上所述。S與b的函數(shù)關系式為:

【解析】直線平移的性質(zhì),相似三角形的判定和性質(zhì),待定系數(shù)法,曲線上點的坐標與方程的關系,直線與圓相切的性質(zhì),勾股定理,解一元二次方程,矩形的性質(zhì)。

【分析】(1)①∵直線y=-2x+b (b≥0)經(jīng)過圓心M(4,2),

              ∴2=-2×4+b,解得b=10。

②如圖,作點M垂直于直線y=-2x+b于點P,過點

P作PH∥x軸,過點M作MH⊥PH,二者交于點H。設直線y=-2x+b與x,y軸分別交于點A,B。

           則由△OAB∽△HMP,得

           ∴可設直線MP的解析式為。

           由M(4,2),得,解得。∴直線MP的解析式為。

           聯(lián)立y=-2x+b和,解得。

           ∴P()。

           由PM=2,勾股定理得,,化簡得。

           解得

(2)求出直線經(jīng)過點A、B、C、D四點時b的值,從而分0≤b≤4,4<b≤6,6<b≤12,12<b≤14,b>14五種情況分別討論即可。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習冊答案