【題目】已知直線y=kx(k≠0)經(jīng)過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標原點),則m的取值范圍為_____.
【答案】m<.
【解析】
利用待定系數(shù)法解答,得出平移后得到的直線,求出A、B點的坐標,轉化為直角三角形中的問題,再由直線與圓的位置關系的判定解答.
把點(12,﹣5)代入直線y=kx得,
﹣5=12k,
∴k=﹣;
由y=﹣x平移m(m>0)個單位后得到的直線l所對應的函數(shù)關系式為y=﹣x+m(m>0),
設直線l與x軸、y軸分別交于點A、B,(如圖所示)
當x=0時,y=m;當y=0時,x=m,
∴A(m,0),B(0,m),
即OA=m,OB=m,
在Rt△OAB中,AB=m,
過點O作OD⊥AB于D,
∵S△ABO=ODAB=OAOB,
∴OD=××,
∵m>0,解得OD=m,
由直線與圓的位置關系可知m<6,解得m<,
故答案為:m<.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點.△ABC的邊BC在x軸上,A、C兩點的坐標分別為A(0,m)、C(n,0),B(﹣5,0),且,點P從B出發(fā),以每秒2個單位的速度沿射線BO勻速運動,設點P運動時間為t秒.
(1)求A、C兩點的坐標;
(2)連接PA,用含t的代數(shù)式表示△POA的面積;
(3)當P在線段BO上運動時,是否存在一點P,使△PAC是等腰三角形?若存在,請寫出滿足條件的所有P點的坐標并求t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關系式,并確定自變量x的取值范圍.
(2)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進價×銷售量)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年本市蜜桔大豐收,某水果商銷售一種蜜桔,成本價為10元/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18元/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數(shù)關系如圖所示:
(1)求y與x之間的函數(shù)關系式;
(2)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應定為多少?
(銷售利潤=銷售價-成本價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請在下面括號里補充完整證明過程:
已知:如圖,△ABC中,∠ACB=90°,AF平分∠CAB,交CD于點E,交CB于點F,且∠CEF=∠CFE.求證:CD⊥AB.
證明:∵AF平分∠CAB (已知)
∴ ∠1=∠2( )
∵∠CEF=∠CFE , 又∠3=∠CEF (對頂角相等)
∴∠CFE=∠3(等量代換)
∵在△ACF中,∠ACF=90°(已知)
∴( )+∠CFE=90°( )
∵∠1=∠2, ∠CFE=∠3(已證) ∴( )+( )=90°(等量代換)
在△AED中, ∠ADE=90°( 三角形內(nèi)角和定理)
∴ CD⊥AB( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)學趣聞:上世紀九十年代,國外有人傳說:“從月亮上看地球,長城是肉眼唯一看得見的建筑物.”設長城的厚度為,人的正常視力能看清的最小物體所形成的視角為,且已知月、地兩球之間的距離為,根據(jù)學過的數(shù)學知識,你認為這個傳說________.(請?zhí)?/span>“可能”或“不可能”,參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩校參加區(qū)教育局舉辦的學生英語口語競賽,兩校參賽人數(shù)相等.比賽結束后,發(fā)現(xiàn)學生成績分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計數(shù)據(jù)繪制了如圖所示的尚不完整的統(tǒng)計圖表.
甲校成績統(tǒng)計表
分數(shù) | 7分 | 8分 | 9分 | 10分 |
人數(shù) | 11 | 0 | 8 |
(1)在圖①中,“7分”所在扇形的圓心角等于______;
(2)請你將②的統(tǒng)計圖補充完整;
(3)經(jīng)計算,乙校的平均分是8.3分,中位數(shù)是8分,請寫出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個學校成績較好;
(4)如果該教育局要組織8人的代表隊參加市級團體賽,為便于管理,決定從這兩所學校中的一所挑選參賽選手,請你分析,應選哪所學校?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,二次函數(shù)y=a(x﹣h)2+的圖象經(jīng)過原點O(0,0),A(2,0).
(1)寫出該函數(shù)圖象的對稱軸;
(2)若將線段OA繞點O逆時針旋轉60°到OA′,試判斷點A′是否為該函數(shù)圖象的頂點?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個矩形的長為a,寬為b(a>0,b>0),則矩形的面積為ab.代數(shù)式xy(x>0,y>0)可以看作是邊長為x和y的矩形的面積.我們可以由此解一元二次方程:x2+x﹣6=0(x>0).具體過程如下:
①方程變形為x(x+1)=6.
②畫四個邊長為x+1、x的矩形如圖放置;
③由面積關系求解方程.
∵SABCD=(x+x+1)2,又SABCD=4x(x+1)+12.
∴(x+x+1)2=4x(x+1)+1,又x(x+1)=6,
∴(2x+1)2=25,
∵x>0,
∴x=2.
參照上述方法求關于x的二次方程x2+mx﹣n=0的解(x>0,m>0,n>0).(要求:畫出示意圖,標注相關線段的長度,寫出解題步驟)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com