代數(shù)式ax2+bx+c(a≠0)當(dāng)x取1和3時,代數(shù)式的值為0.
(1)求b、c分別與a的關(guān)系式;
(2)當(dāng)代數(shù)式的值等于-a和3a時,求x;
(3)用y表示上述代數(shù)式的值,把所得到的任意一對有序?qū)崝?shù)對(x,y)作為直角坐標平面內(nèi)的點的坐標.請在-3<a<3的范圍內(nèi),對a取一個合適的值,畫出此時點(x,y)所成圖形的示意圖,然后觀察并寫出點(x,y)的位置隨x的增大而變化的規(guī)律.
解:(1)
②-①得,8a+2b=0,即b=-4a,
代入①得,a-4a+c=0,
∴c=3a,
∴b=-4a為所求的關(guān)系式.
(2)∵b=-4a,c=3a,
∴ax
2+bx+c=ax
2-4ax+3a,
由題意知,ax
2-4ax+3a=-a,
∵a≠0,
∴x
2-4x+4=0,
解得x
1=-2,x
2=2;
又ax
2-4ax+3a=3a,
∵a≠0,
∴x
2-4x=0,
解得x
1=0,x
2=4.
(3)∵-3<a<3,且a≠0,
∴取a=1,有y=x
2-4x+3,
即y=(x-2)
2-1.
∴所成圖形為二次函數(shù)y=x
2-4x+3的圖象,頂點坐標為(2,-1),與x軸的交點坐標為(1,0)(3,0)如圖,
∴①當(dāng)x<2時,點(x,y)的位置隨x的增大而減小;
②當(dāng)x≥2時,點(x,y)的位置隨x的增大而增大.
分析:(1)把x=1,x=3分別代入關(guān)于x的方程ax
2+bx+c=0(a≠0),便可求出b、c分別與a的關(guān)系式.
(2)把(1)中b、c分別與a的關(guān)系式代入代數(shù)式中,再分別令代數(shù)式的值等于-a和3a,求出a的值即可.
(3)在-3<a<3的范圍內(nèi)取a的值,得到關(guān)于x,y的函數(shù)關(guān)系式,求出其頂點坐標,與x軸的交點坐標即可畫出函數(shù)圖象.
點評:本題考查的是在方程組中用把一個未知數(shù)當(dāng)作已知,表示另一個未知數(shù)的解方程組的方法,及畫二次函數(shù)圖象的方法,比較簡單.