1)已知正方形ABCD中,對角線AC與BD相交于點O,如圖①,將△BOC繞點O逆時針方向旋轉(zhuǎn)得到△B′OC′,OC′與CD交于點M,OB′與BC交于點N,請猜想線段CM與BN的數(shù)量關(guān)系,并證明你的猜想.
(2)如圖②,將(1)中的△BOC繞點B逆時針旋轉(zhuǎn)得到△BO′C′,連接AO′、DC′,請猜想線段AO′與DC′的數(shù)量關(guān)系,并證明你的猜想.
(3)如圖③,已知矩形ABCD和Rt△AEF有公共點A,且∠AEF=90°,∠EAF=∠DAC=α,連接DE、CF,請求出的值(用α的三角函數(shù)表示).
解:(1)CM=BN.理由如下:如圖①,
∵四邊形ABCD為正方形,
∴OB=OC,∠OBC=∠OCD=45°,∠BOC=90°,
∵△BOC繞點O逆時針方向旋轉(zhuǎn)得到△B′OC′,
∴∠B′OC′=∠BOC=90°,
∴∠B′OC+∠COC′=90°,
而∠BOB′+∠B′OC=90°,
∴∠B′OB′=∠COC′,
在△BON和△COM中
,
∴△BON≌△COM,
∴CM=BN;
(2)如圖②,連接DC′,
∵四邊形ABCD為正方形,
∴AB=BC,AC=BD,OB=OC,∠OBC=∠ABO=45°,∠BOC=90°,
∴△ABC和△OBC都是等腰直角三角形,
∴AC=AB,BC=BO,
∴BD=AB,
∵△BOC繞點B逆時針方向旋轉(zhuǎn)得到△B′OC′,
∴∠O′BC′=∠OBC=45°,OB=O′B,BC′=BC,
∴BC′=BO′,
∴==,
∵∠1+∠3=45°,∠2+∠3=45°,
∴∠1=∠2,
∴△BDC′∽△BAO′,
∴==,
∴DC′=AO′;
(3)如圖③,在Rt△AEF中,cos∠EAF=;
在Rt△DAC中,cos∠DAC=,
∵∠EAF=∠DAC=α,
∴==cosα,∠EAF+∠FAD=∠FAD+∠DAC,即∠EAD=∠FAC,
∴△AED∽△AFC,
∴==cosα.
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在一張正方形紙片上剪下一個半徑為r的圓形和一個半徑為R的扇形,使之恰好圍成圖中所示的圓錐,則R與r之間的關(guān)系是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某學(xué)校游戲節(jié)活動中,設(shè)計了一個有獎轉(zhuǎn)盤游戲,如圖,A轉(zhuǎn)盤被分成三個面積相等的扇形,B轉(zhuǎn)盤被分成四個面積相等的扇形,每一個扇形都標有相應(yīng)的數(shù)字,先轉(zhuǎn)動A轉(zhuǎn)盤,記下指針所指區(qū)域內(nèi)的數(shù)字,再轉(zhuǎn)動B轉(zhuǎn)發(fā)盤,記下指針所指區(qū)域內(nèi)的數(shù)字(當指針在邊界線上時,重新轉(zhuǎn)動一次,直到指針指向一下區(qū)域內(nèi)為止),然后,將兩次記錄的數(shù)據(jù)相乘.
(1)請利用畫樹狀圖或列表格的方法,求出乘積結(jié)果為負數(shù)的概率.
(2)如果乘積是無理數(shù)時獲得一等獎,那么獲得一等獎的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
小華和小苗練習(xí)射擊,兩人的成績?nèi)鐖D所示,小華和小苗兩人成績的方差分別為S12、S22,根據(jù)圖中的信息判斷兩人方差的大小關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
為推廣陽光體育“大課間”活動,我市某中學(xué)決定在學(xué)生中開設(shè)A:實心球.B:立定跳遠,C:跳繩,D:跑步四種活動項目.為了了解學(xué)生對四種項目的喜歡情況,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:
(1)在這項調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請計算本項調(diào)查中喜歡“立定跳遠”的學(xué)生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補充完整;
(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com