如圖,為了緩解交通擁堵,方便行人,在某街道計劃修建一座橫斷面為梯形ABCD的過街天橋,若天橋斜坡AB的坡角∠BAD為35°,斜坡CD的坡度為i=1:1.2(垂直高度CE與水平寬度DE的比),上底BC=10m,天橋高度CE=5m,求天橋下底AD的長度?(結(jié)果精確到0.1m,參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

解:過B作BF⊥AD于F,則四邊形BCEF為矩形,
則BF=CE=5m,BC=EF=10m,
在Rt△ABF中,=tan35°,
則AF=≈7.1m,
在Rt△CDE中,
∵CD的坡度為i=1:1.2,
=1:1.2,
則ED=6m,
∴AD=AF+EF+ED=7.1+10+6=23.1(m).
答:天橋下底AD的長度為23.1m.
分析:過B作BF⊥AD于F,可得四邊形BCEF為矩形,BF=CE,在Rt△ABF和Rt△CDE中,分別解直角三角形求出AF,ED的長度,繼而可求得AD的長度.
點評:本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是根據(jù)坡度和坡角構(gòu)造直角三角形,分別用解直角三角形的知識求出AF、ED的長度,難度一般.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•昆明)如圖,為了緩解交通擁堵,方便行人,在某街道計劃修建一座橫斷面為梯形ABCD的過街天橋,若天橋斜坡AB的坡角∠BAD為35°,斜坡CD的坡度為i=1:1.2(垂直高度CE與水平寬度DE的比),上底BC=10m,天橋高度CE=5m,求天橋下底AD的長度?(結(jié)果精確到0.1m,參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(云南昆明卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,為了緩解交通擁堵,方便行人,在某街道計劃修建一座橫斷面為梯形ABCD的過街天橋,若天橋斜坡AB的坡角∠BAD為35°,斜坡CD的坡度為i=1:1.2(垂直高度CE與水平寬度DE的比),上底BC=10m,天橋高度CE=5m,求天橋下底AD的長度?(結(jié)果精確到0.1m,參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,為了緩解交通擁堵,方便行人,在某街道計劃修建一座橫斷面為梯形ABCD的過街天橋,若天橋斜坡AB的坡角∠BAD為35°,斜坡CD的坡度為i=1:1.2(垂直高度CE與水平寬度DE的比),上底BC=10m,天橋高度CE=5m,求天橋下底AD的長度?(結(jié)果精確到0.1m,參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年云南省昆明市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,為了緩解交通擁堵,方便行人,在某街道計劃修建一座橫斷面為梯形ABCD的過街天橋,若天橋斜坡AB的坡角∠BAD為35°,斜坡CD的坡度為i=1:1.2(垂直高度CE與水平寬度DE的比),上底BC=10m,天橋高度CE=5m,求天橋下底AD的長度?(結(jié)果精確到0.1m,參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

查看答案和解析>>

同步練習冊答案