【題目】如圖,二次函數的圖象經過坐標原點,與軸的另一個交點為A(-2,0).
(1)求二次函數的解析式
(2)在拋物線上是否存在一點P,使△AOP的面積為3,若存在請求出點P的坐標,若不存在,請說明理由.
【答案】(1)y=-x2-2x(2)或
【解析】阿濟格:(1)把點(0,0)和點A(-2,0)分別代入函數關系式來求b、c的值;
(2)設點P的坐標為(x,-x2-2x).利用三角形的面積公式得到-x2-2x=±3.通過解方程來求x的值,則易求點P的坐標.
試題解析:(1)∵二次函數y=-x2+bx+c的圖象經過坐標原點(0,0)
∴c=0.
又∵二次函數y=-x2+bx+c的圖象過點A(-2,0)
∴-(-2)2-2b+0=0,
∴b=-2.
∴所求b、c值分別為-2,0;
(2)存在一點P,滿足S△AOP=3.
設點P的坐標為(x,-x2-2x)
∵S△AOP=3
∴×2×|-x2-2x|=3
∴-x2-2x=±3.
當-x2-2x=3時,此方程無解;
當-x2-2x=-3時,
解得 x1=-3,x2=1.
∴點P的坐標為(-3,-3)或(1,-3).
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l與⊙O相離,OA⊥l于點A,OA=5,OA與⊙O相交于點P,AB與⊙O相切于點B, BP的延長線交直線l于點C.
(1)試判斷線段AB與AC的數量關系,并說明理由;
(2)若PC=,求⊙O的半徑和線段PB的長;
(3)若在⊙O上存在點Q,使△QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形的邊長為a,以各邊才為直徑在正方形內畫半圓,所圍成的圖形(圖中陰影部分)的面積為( )
A. a2﹣
B. ﹣a2
C.a2﹣
D.πa2﹣a2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在方格紙中,三角形ABC的三個頂點和點P都在小方格的頂點上.
(1)請在圖1中,畫出將三角形ABC繞點C旋轉后的三角形A1B1C,使得點P落在三角形A1B1C內部,且三角形A1B1C的頂點也都落在方格的頂點上.
(2)寫出旋轉角的度數 .
(3)拓展延伸:如圖2,將直角三角形ABC(其中∠C=90°)繞點A按順時針方向選擇115°得到△AB1C1 , 使得點C,A,B1在同一條直線上,那么∠BAC1等于 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校七年級四個班級的學生義務為校植樹.一班植樹x棵,二班植樹的棵樹比一班的2倍少40棵,三班植樹的棵數比二班的一半多30棵,四班植樹的棵數比三班的一半多20棵.
(1)求四個班共植樹多少棵?(用含x的式子表示)
(2)若三班和四班植樹一樣多,那么植樹最多的班級比植樹最少的班級多植樹多少棵?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面的解題過程:
解方程:|x+3|=2.
解:當x+3≥0時,原方程可化成為x+3=2
解得x=-1,經檢驗x=-1是方程的解;
當x+3<0,原方程可化為,-(x+3)=2
解得x=-5,經檢驗x=-5是方程的解.
所以原方程的解是x=-1,x=-5.
解答下面的兩個問題:
(1)解方程:|3x-2|-4=0;
(2)探究:當值a為何值時,方程|x-2|=a , ①無解;②只有一個解;③有兩個解.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com