分析 首先連接OA、OB,求出∠AOB=60°,進(jìn)而判斷出△AOB為等邊三角形;然后根據(jù)⊙O的半徑為6,可得AB=OA=OB=6,再根據(jù)三角形的中位線定理,求出EF的長度;最后判斷出當(dāng)弦GH是圓的直徑時,它的值最大,進(jìn)而求出GE+FH的最大值是多少即可.
解答 解:連接OA、OB,
∵$\widehat{AB}$=60°,
∴∠AOB=60°,
∵OA=OB,
∴△AOB為等邊三角形,
∵⊙O的半徑為6,
∴AB=OA=OB=6,
∵點(diǎn)E,F(xiàn)分別是AC、BC的中點(diǎn),
∴EF=$\frac{1}{2}$AB=$\frac{1}{2}×6$=3,
要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,
∵當(dāng)弦GH是圓的直徑時,它的最大值為:6×2=12,
∴GE+FH的最大值為:12-3=9.
故答案為:9.
點(diǎn)評 此題主要考查了三角形中位線定理的應(yīng)用,等邊三角形的性質(zhì)和判定,圓周角定理,關(guān)鍵是掌握三角形的中位線平行于第三邊,并且等于第三邊的一半;在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1.6×104元 | B. | 1.6×105元 | C. | 1.6×106元 | D. | 0.16×107元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{10}$ | B. | 2$\sqrt{2}$ | C. | 3 | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com