已知AB是⊙O的直徑,點P是AB延長線上的一個動點,過P作⊙O的切線,切點為C,∠APC的平分線交AC于點D,則∠CDP等于


  1. A.
    30°
  2. B.
    60°
  3. C.
    45°
  4. D.
    50°
C
分析:連接OC,根據(jù)題意,可知OC⊥PC,∠CPD+∠DPA+∠A+∠ACO=90°,可推出∠DPA+∠A=45°,即∠CDP=45°.
解答:解:如圖,連接OC,
∵OC=OA,PD平分∠APC,
∴∠CPD=∠DPA,∠A=∠ACO,
∵PC為⊙O的切線,
∴OC⊥PC,
∵∠CPO+∠COP=90°,
∴(∠CPD+∠DPA)+(∠A+∠ACO)=90°,
∴∠DPA+∠A=45°,
即∠CDP=45°.
故選C.
點評:本題主要考查切線的性質、等邊三角形的性質、角平分線的性質、外角的性質,解題的關鍵在于作好輔助線構建直角三角形,求證∠CPD+∠DPA+∠A+∠ACO=90°,即可求出∠CDP=45°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,∠CAB=30°,過點C的⊙O的切線交AB延長線于D,若OD=4
3
,那么弦AC長等于
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,過點O作弦BC的平行線,交過點A的切線AP于點P,連接AC.
(1)求證:△ABC∽△POA;
(2)若OB=2,OP=
72
,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是⊙O的直徑,點C在⊙O上,直線CD與AB的延長線交于點D,∠COB=2∠DCB.精英家教網(wǎng)
(1)求證:CD是⊙O的切線;
(2)點E是
AB
的中點,CE交AB于點F,若AB=4,求EF•EC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是⊙O的直徑,AD切⊙O于點A,
EC
=
CB
.給出下列結論:
①BA⊥DA;②OC∥AE;③OD⊥AC;④∠EAC=
1
4
∠EOB.
其中正確的結論有
①②④
①②④
.(把你認為正確的結論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知AB是⊙O的直徑,弧AC的度數(shù)是30°.如果⊙O的直徑為4,那么AC2等于( 。

查看答案和解析>>

同步練習冊答案