【題目】如圖所示,在等邊三角形ABC中,BC=8cm,射線AGBC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG1cm/s的速度運(yùn)動,同時點(diǎn)F從點(diǎn)B出發(fā)沿射線BC2cm/s的速度運(yùn)動,設(shè)運(yùn)動時間為ts).

1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時,求證:四邊形AFCE是平行四邊形;

2)填空:當(dāng)t  s時,四邊形ACFE是菱形;

當(dāng)t  s時,△ACE的面積是△ACF的面積的2倍.

【答案】1)證明見解析;(2)①8;

【解析】

1)判斷出ADE≌△CDF得出AECF,即可得出結(jié)論;

2先求出ACBC8,進(jìn)而判斷出AECFAC8,即可得出結(jié)論;

先判斷出ACEACF的邊AECF上的高相等,進(jìn)而判斷出AE2CF,再分兩種情況,建立方程求解即可得出結(jié)論.

解:(1)如圖1

AGBC,

∴∠EAC=FCA,∠AED=CFD

EF經(jīng)過AC邊的中點(diǎn)D,

AD=CD,

∴△ADE≌△CDFAAS),

AE=CF

AEFC

∴四邊形AFCE是平行四邊形;

2)①如圖2

∵△ABC是等邊三角形,

AC=BC=8

∵四邊形ACFE是菱形,

AE=CF=AC=BC=8,且點(diǎn)FBC延長線上,由運(yùn)動知,AE=tBF=2t,

CF=2t8,t=8,將t=8代入CF=2t8中,

CF=8=AC=AE,符合題意,即:t=8秒時,四邊形ACFE是菱形.

故答案為:8;

②設(shè)平行線AGBC的距離為h,

∴△ACEAE上的高為h,ACF的邊CF上的高為h

∵△ACE的面積是ACF的面積的2倍,

AE=2CF,當(dāng)點(diǎn)F在線段BC上時(0t4),CF=82t,AE=t,

t=282t),

當(dāng)點(diǎn)FBC的延長線上時(t4),CF=2t8AE=t,

t=22t8),

即:t=秒或秒時,ACE的面積是ACF的面積的2倍.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3張正面分別寫有數(shù)字,01的卡片,它們的背面完全相同,現(xiàn)將這3張卡片背面朝上洗勻,小明先從中任意抽出一張卡片記下數(shù)字為x;小亮再從剩下的卡片中任意取出一張記下數(shù)字為y,記作

用列表或畫樹狀圖的方法列出所有可能的點(diǎn)P的坐標(biāo);

若規(guī)定:點(diǎn)在第二象限小明獲勝;點(diǎn)在第四象限小亮獲勝,游戲規(guī)則公平嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某項工程由甲乙兩隊合作12天可以完成,供需工程費(fèi)用13800,乙隊單獨(dú)完成這項工程所需時間是甲隊單獨(dú)完成這項工程所需時間的1.5,且甲隊每天的工程費(fèi)用比乙隊多150。

1甲乙兩隊單獨(dú)完成這項工程分別需要多少天?

2若工程管理部門決定從這兩個隊中選一個隊單獨(dú)完成這項工程,從節(jié)約資金的角度考慮,應(yīng)該選擇哪個工程隊?請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx-4a經(jīng)過A(-10)、C(0,4)兩點(diǎn),與x軸交于另一點(diǎn)B

1)求拋物線的解析式;

2)已知點(diǎn)D(mm+1)在第一象限的拋物線上,求點(diǎn)D關(guān)于直線BC對稱的點(diǎn)的坐標(biāo);

3)在(2)的條件下,連接BD,點(diǎn)P為拋物線上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示.在△ABC中,內(nèi)角∠BAC與外角∠CBE的平分線相交于點(diǎn)PBE=BC,PBCE交于點(diǎn)HPGADBCF,交ABG,連接CP.下列結(jié)論:ACB=2APB;SPACSPAB=ACAB;BP垂直平分CEPCF=CPF.其中,正確的有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017重慶A卷第11題)如圖,小王在長江邊某瞭望臺D處,測得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米,則此時AB的長約為( 。▍⒖紨(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

A. 5.1 B. 6.3 C. 7.1 D. 9.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,把按圖1擺放,點(diǎn)CE點(diǎn)重合,點(diǎn)B、C、E、F始終在同一條直線上,,,,,如圖2從圖1的位置出發(fā),以每秒1個單位的速度沿CB方向勻速移動,同時,點(diǎn)PA出發(fā),沿AB以每秒1個單位向點(diǎn)B勻速移動,AC的直角邊相交于Q,當(dāng)P到達(dá)終點(diǎn)B時,同時停止運(yùn)動連接PQ,設(shè)移動的時間為解答下列問題:

在平移的過程中,當(dāng)點(diǎn)DAC邊上時,求ABt的值;

在移動的過程中,是否存在為等腰三角形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象經(jīng)過,兩點(diǎn),與反比例函數(shù)的圖象在第一象限內(nèi)的交點(diǎn)為

求一次函數(shù)和反比例函數(shù)的表達(dá)式;

x軸上是否存在點(diǎn)P,使?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1.

b24ac

4a﹣2b+c<0;

不等式ax2+bx+c>0的解集是x≥3.5;

若(﹣2,y1),(5,y2)是拋物線上的兩點(diǎn),則y1<y2

上述4個判斷中,正確的是( 。

A.①② B①④ C①③④ D②③④

查看答案和解析>>

同步練習(xí)冊答案