如圖①,在中,的中點(diǎn).以為圓心,為半徑的圓交于點(diǎn),過(guò),垂足為,我們可以證得的切線.

(1)若點(diǎn)沿向點(diǎn)移動(dòng),以為圓心,為半徑的圓仍交于點(diǎn),,垂足為,不變(如圖②),那么有什么位置關(guān)系,請(qǐng)寫出你的結(jié)論并證明;

(2)在(1)的條件下,若相切于點(diǎn),交于點(diǎn)(如圖③).已知的半徑長(zhǎng)為3,,求的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)如圖1,把邊長(zhǎng)是3的等邊三角形的各邊三等分,分別以居中那條線段為一邊向外作等邊三角形,并去掉居中的那條線段,得到圖2,再把圖2中圖形各邊三等分,分別以居中那條線段為一邊向外作等邊三角形,并去掉居中的那條線段,得到一個(gè)新圖形,則這個(gè)新圖形的周長(zhǎng)是
 

(2)如圖3,在5×5的網(wǎng)格中有一個(gè)正方形,把正方形的各邊三等分,分別以居中那條線段為斜邊向外作等腰直角三角形,去掉居中的那條線段,得到圖4,請(qǐng)把圖4中的圖形剪拼成正方形,并在圖4中畫出剪裁線,在圖5中畫出剪拼后的正方形.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖1,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.容易證得:CE=CF;
(1)在圖1中,若G在AD上,且∠GCE=45°,試猜想GE、BE、GD三線段之間的關(guān)系,并證明你的結(jié)論;
(2)在(1)的條件下,若以C為圓心,CD為半徑作圓,試判斷此圓與直線EG的位置關(guān)系,并說(shuō)明理由;
(3)運(yùn)用(1)中解答所積累的經(jīng)驗(yàn)和知識(shí),完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一點(diǎn),且∠DCE=45°,BE=4,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

根據(jù)所給的基本材料,請(qǐng)你進(jìn)行適當(dāng)?shù)奶幚,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個(gè)問(wèn)題;②給出正確的解答過(guò)程;③寫出編寫意圖和學(xué)生答題情況的預(yù)測(cè).
材料①:如圖,先把一矩形紙片ABCD對(duì)折,得到折痕MN,然后把B點(diǎn)疊在折痕線上,得到△ABE,再過(guò)點(diǎn)B把矩形ABCD第三次折疊,使點(diǎn)D落在直線AD上,得到折痕PQ.當(dāng)沿著BE第四次將該紙片折疊后,點(diǎn)A就會(huì)落在EC上.
精英家教網(wǎng)
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數(shù)表示).
精英家教網(wǎng)
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿線段BA向點(diǎn)A勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由A出發(fā)沿線段AC向點(diǎn)C勻速運(yùn)動(dòng),速度為2cm/s;連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<2).
精英家教網(wǎng)
編寫試題選取的材料是
 
(填寫材料的序號(hào))
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時(shí)刻t,使線段PQ恰好把Rt△ACB的周長(zhǎng)和面積同時(shí)平分?若存在,求出此時(shí)t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)菱形的邊長(zhǎng).
試題解答(寫出主要步驟即可):(1)過(guò)點(diǎn)Q作QD⊥AP于點(diǎn)D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長(zhǎng)和面積,由周長(zhǎng)求出t,代入函數(shù)解析式驗(yàn)證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2002•甘肅)(在下面的(I)(II)兩題中選做一題,若兩題都做,按第(I)題評(píng)分)
(I)如圖,在△ABC中,AB=4,BC=3,∠B=90°,點(diǎn)D在AB上運(yùn)動(dòng),但與A、B不重合,過(guò)B、C、D三點(diǎn)的圓交AC于E,連接DE.
(1)設(shè)AD=x,CE=y,求y與x之間的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)當(dāng)AD長(zhǎng)為關(guān)于x的方程2x2+(4m+1)x+2m=0的一個(gè)整數(shù)根時(shí),求m的值.

(II)如圖,在直角坐標(biāo)系xOy中,以點(diǎn)A(0,-3)為圓心作圓與x軸相切,⊙B與⊙A外切干點(diǎn)P,B點(diǎn)在x軸正半軸上,過(guò)P點(diǎn)作兩圓的公切線DP交y軸于D,交x軸于C,
(1)設(shè)⊙A的半徑為r1,⊙B的半徑為r2,且r2=r1,求公切線DP的長(zhǎng)及直線DP的函數(shù)解析式,
(2)若⊙A的位置、大小不變,點(diǎn)B在X軸正半軸上移動(dòng),⊙B與⊙A始終外切.過(guò)D作⊙B的切線DE,E為切點(diǎn).當(dāng)DE=4時(shí),B點(diǎn)在什么位置?從解答中能發(fā)現(xiàn)什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:河北省中考真題 題型:解答題

如圖(1)至圖(5),⊙O均作無(wú)滑動(dòng)滾動(dòng),⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O與線段AB或BC相切于端點(diǎn)時(shí)刻的位置,⊙O的周長(zhǎng)為c。
閱讀理解:
(1)如圖(1),⊙O從⊙O1的位置出發(fā),沿AB滾動(dòng)到⊙O2的位置,當(dāng)AB=c時(shí),⊙O恰好自轉(zhuǎn)1周。
(2)如圖(2),∠ABC相鄰的補(bǔ)角是n°,⊙O在∠ABC外部沿A-B-C滾動(dòng),在點(diǎn)B處,必須由⊙O1的位置旋轉(zhuǎn)到⊙O2的位置,⊙O繞點(diǎn)B旋轉(zhuǎn)的角∠O1BO2=n°,⊙O在點(diǎn)B處自轉(zhuǎn)周。
實(shí)踐應(yīng)用:
(1)在閱讀理解的(1)中,若AB=2c,則⊙O自轉(zhuǎn)周;若AB=l,則⊙O自轉(zhuǎn)____周;
在閱讀理解的(2)中,若∠ABC=120°,則⊙O在點(diǎn)B處自轉(zhuǎn)____周;
若∠ABC=60°,則⊙O在點(diǎn)B處自轉(zhuǎn)____周;
(2)如圖(3),∠ABC=90°,AB=BC=c,⊙O從⊙O1的位置出發(fā),在∠ABC外部沿A-B-C滾動(dòng)到⊙O4的位置,則⊙O自轉(zhuǎn)____周;
拓展聯(lián)想:
(1)如圖(4),△ABC的周長(zhǎng)為l,⊙O從與AB相切于點(diǎn)D的位置出發(fā),在△ABC外部,按順時(shí)針?lè)较蜓厝切螡L動(dòng),又回到與AB相切于點(diǎn)D的位置,⊙O自轉(zhuǎn)了多少周?請(qǐng)說(shuō)明理由;
(2)如圖(5),多邊形的周長(zhǎng)為l,⊙O從與某邊相切于點(diǎn)D的位置出發(fā),在多邊形外部,按順時(shí)針?lè)较蜓囟噙呅螡L動(dòng),又回到與該邊相切于點(diǎn)D的位置,直接寫出⊙O自轉(zhuǎn)的周數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案