【題目】對(duì)于平面直角坐標(biāo)系 xOy 中的點(diǎn) A,給出如下定義:若存在點(diǎn) B(不與點(diǎn) A 重合,且直線 AB 不與 坐標(biāo)軸平行或重合),過(guò)點(diǎn) A 作直線 mx 軸,過(guò)點(diǎn) B 作直線 ny 軸,直線 m,n 相交于點(diǎn) C.當(dāng)線段 AC,BC 的長(zhǎng)度相等時(shí),稱點(diǎn) B 為點(diǎn) A 的等距點(diǎn),稱三角形 ABC 的面積為點(diǎn) A 的等距面積. 例如:如 圖,點(diǎn) A2,1),點(diǎn) B5,4),因?yàn)?/span> AC= BC=3,所以 B 為點(diǎn) A 的等距點(diǎn),此時(shí)點(diǎn) A 的等距面積為

(1)點(diǎn) A 的坐標(biāo)是(0,1),在點(diǎn) B12,3),B2 (1, 1) , B3 (3, 2) 中,點(diǎn)A的等距點(diǎn)為

(2)點(diǎn) A 的坐標(biāo)是 (3,1) ,點(diǎn) A 的等距點(diǎn) B 在第三象限,

若點(diǎn) B 的坐標(biāo)是 (5, 1) ,求此時(shí)點(diǎn) A 的等距面積;

若點(diǎn) A 的等距面積不小于 2,請(qǐng)直接寫出點(diǎn) B 的橫坐標(biāo) t 的取值范圍.

【答案】1B1,B3;(2)①2;②t-5-1t0

【解析】

1)根據(jù)等距點(diǎn)的定義可作判斷;

2)①計(jì)算等腰直角△ACB的面積即可;

②根據(jù)題意畫出全等的等腰直角三角形ABCAB1C1,發(fā)現(xiàn)點(diǎn)B可以在射線BF上或線段B1M上,可得t的取值.

解:(1)如圖1,過(guò)Ax軸的平行線m,過(guò)B1y軸的平行線n,交于C1

∵點(diǎn)A的坐標(biāo)是(0,1),在點(diǎn)B1(2,3),

AC1=B1C1=2,即B1是點(diǎn)A的等距點(diǎn),

同理:AC3=B3C3=3,B3是點(diǎn)A的等距點(diǎn),

AC2≠B2C2,B2不是點(diǎn)A的等距點(diǎn),

故答案為B1,B3;

2)①如圖2,根據(jù)題意,可知ACBC

A(-3,1)B(-5,-1),

AC=BC=2

∴三角形ABC的面積為:ACBC==2

∴點(diǎn)A的等距面積為2

②∵三角形ABC的面積為:ACBC≥2,

AC=BC≥2,

如圖3,根據(jù)①作全等的等腰直角三角形ABCAB1C1,發(fā)現(xiàn)點(diǎn)B可以在射線BF上或線段B1M上,

A(-31),

B(-5-1),B1(-1,-1)

∴點(diǎn)B的橫坐標(biāo)t的取值范圍是t-5-1t0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)碼專營(yíng)店銷售甲、乙兩種品牌智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:

進(jìn)價(jià)(元/部)

4300

3600

售價(jià)(元/部)

4800

4200

1)該店銷售記錄顯示.三月份銷售甲、乙兩種手機(jī)共17部,且銷售甲種手機(jī)的利潤(rùn)恰好是銷售乙種手機(jī)利潤(rùn)的2倍,求該店三月份售出甲種手機(jī)和乙種手機(jī)各多少部?

2)根據(jù)市場(chǎng)調(diào)研,該店四月份計(jì)劃購(gòu)進(jìn)這兩種手機(jī)共20部,要求購(gòu)進(jìn)乙種手機(jī)數(shù)不超過(guò)甲種手機(jī)數(shù)的,而用于購(gòu)買這兩種手機(jī)的資金低于81500元,請(qǐng)通過(guò)計(jì)算設(shè)計(jì)所有可能的進(jìn)貨方案.

3)在(2)的條件下,該店打算將四月份按計(jì)劃購(gòu)進(jìn)的20部手機(jī)全部售出后,所獲得利潤(rùn)的30%用于購(gòu)買A,B兩款教學(xué)儀器捐贈(zèng)給某希望小學(xué).已知購(gòu)買A儀器每臺(tái)300元,購(gòu)買B儀器每臺(tái)570元,且所捐的錢恰好用完,試問(wèn)該店捐贈(zèng)AB兩款儀器一共多少臺(tái)?(直接寫出所有可能的結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識(shí)后發(fā)現(xiàn),只用兩把完全相同的長(zhǎng)方形直尺就可以作出一個(gè)角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說(shuō):射線OP就是∠BOA的角平分線.他這樣做的依據(jù)是(  )

A. 角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上

B. 角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等

C. 三角形三條角平分線的交點(diǎn)到三條邊的距離相等

D. 以上均不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為增加環(huán)保意識(shí),某社區(qū)計(jì)劃開展一次減碳環(huán)保,減少用車時(shí)間的宣傳活動(dòng),對(duì)部分家庭五月份的平均每天用車時(shí)間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收 集的數(shù)據(jù)繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)本次抽樣調(diào)查了多少個(gè)家庭?

(2)將圖中的頻數(shù)分布直方圖補(bǔ)充完整;

(3)求用車時(shí)間在 1 小時(shí)~1.5 小時(shí)的部分對(duì)應(yīng)的扇 形圓心角的度數(shù);

(4)若該社區(qū)有車家庭有 1 600 個(gè),請(qǐng)你估計(jì)該社區(qū)用車時(shí)間不超過(guò) 1.5 小時(shí)的約有多少個(gè)家庭.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,有點(diǎn) Aa1,3),Ba+2,2a1

(1)若線段ABx軸,求點(diǎn)A、B的坐標(biāo);

(2)當(dāng)點(diǎn)Bx軸的距離是點(diǎn)Ay軸的距離2倍時(shí),求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD和四邊形DEFG為正方形,點(diǎn)E在線段DC上,點(diǎn)A,D,G在同一直線上,且AD=3,DE=1,連接AC,CG,AE,并延長(zhǎng)AE交OG于點(diǎn)H.

(1)求證:∠DAE=∠DCG.
(2)求線段HE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究與發(fā)現(xiàn):

探究一:我們知道,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在何種數(shù)量關(guān)系呢?

已知:如圖1,∠FDC與∠ECD分別為△ADC的兩個(gè)外角,試探究∠A與∠FDC+∠ECD的數(shù)量關(guān)系.

探究二:三角形的一個(gè)內(nèi)角與另兩個(gè)內(nèi)角的平分線所夾的鈍角之間有何種關(guān)系?

已知:如圖2,在△ADC中,DP、CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關(guān)系.

探究三:若將△ADC改為任意四邊形ABCD呢?

已知:如圖3,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試?yán)蒙鲜鼋Y(jié)論探究∠P與∠A+∠B的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,在中,三個(gè)頂點(diǎn)的坐標(biāo)分別為,將沿 軸負(fù)方向平移個(gè)單位長(zhǎng)度,再沿軸負(fù)方向平移個(gè)單位長(zhǎng)度,得到,其 中點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn)

直接寫出平移后的的頂點(diǎn)坐標(biāo):

在坐標(biāo)系中畫出平移后的

求出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,CDAB,EFAB,垂足分別為D、F

1)若∠1=2,試說(shuō)明DGBC

2)若CD 平分∠ACB,∠A=60°,求∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案