【題目】如圖,我們把拋物線y=﹣x(x﹣3)(0≤x≤3)記為C1,它與x軸交于點(diǎn)O,A1將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x 軸于另一點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x 軸于另一點(diǎn)A3;…;如此進(jìn)行下去,直至得C2016.①C1的對(duì)稱軸方程是_____;②若點(diǎn)P(6047,m)在拋物線C2016上,則m=_____

【答案】,-2

【解析】

根據(jù)對(duì)稱軸公式即可求得對(duì)稱軸方程觀察圖形可知第偶數(shù)號(hào)拋物線都在x軸下方,然后求出到拋物線C2016平移的距離再根據(jù)向右平移橫坐標(biāo)加表示出拋物線C2016的解析式,然后把點(diǎn)P的坐標(biāo)代入計(jì)算即可得解.

,∴對(duì)稱軸由圖可知,拋物線C2016x軸下方,相當(dāng)于拋物線C1向右平移3×20156045個(gè)單位得到,拋物線C13的解析式為,∵點(diǎn)P6047m)在拋物線C2016上,∴,故答案是①,2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC 中,點(diǎn) D 是線段 BC 上一點(diǎn).作射線 AD ,點(diǎn) B 關(guān)于射線 AD 的對(duì)稱點(diǎn)為 E .連接 EC 并延長(zhǎng),交射線 AD 于點(diǎn) F .

1)補(bǔ)全圖形;(2)求AFE 的度數(shù);(3)用等式表示線段 AF 、CF 、 EF 之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一次夏令營(yíng)活動(dòng)中,小明從營(yíng)地A出發(fā),沿北偏東60°方向走了m 到達(dá)點(diǎn)B,然后再沿北偏西30°方向走了50m到達(dá)目的地C。

1)求A、C兩點(diǎn)之間的距離;

2)確定目的地C在營(yíng)地A的北偏東多少度方向。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三個(gè)頂點(diǎn)的坐標(biāo)分別為,,。

1)請(qǐng)畫出關(guān)于軸對(duì)稱后得到的

2)直接寫出點(diǎn),點(diǎn),點(diǎn)的坐標(biāo);

3)在軸上尋找一個(gè)點(diǎn),使的周長(zhǎng)最小,并直接寫出的周長(zhǎng)的最小值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC、CDE都是等腰三角形,且CACB,CDCE,ACB=∠DCEα,AD,BE相交于點(diǎn)O,點(diǎn)M,N分別是線段AD,BE的中點(diǎn),以下4個(gè)結(jié)論:ADBE;②∠DOB180°α;CMN是等邊三角形;④連OC,OC平分∠AOE.正確的是(

A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)批發(fā)商銷售成本為20/千克的某產(chǎn)品,根據(jù)物價(jià)部門規(guī)定:該產(chǎn)品每千克售價(jià)不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價(jià)x(元/千克)滿足一次函數(shù)關(guān)系,對(duì)應(yīng)關(guān)系如下表:

售價(jià)x(元/千克)


50

60

70

80


銷售量y(千克)


100

90

80

70


1)求yx的函數(shù)關(guān)系式;

2)該批發(fā)商若想獲得4000元的利潤(rùn),應(yīng)將售價(jià)定為多少元?

3)該產(chǎn)品每千克售價(jià)為多少元時(shí),批發(fā)商獲得的利潤(rùn)w(元)最大?此時(shí)的最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】形如:的函數(shù)叫二次函數(shù),它的圖象是一條拋物線.類比一元一次方程的解可以看成兩條直線的交點(diǎn)的橫坐標(biāo);則一元二次方程的解可以看成拋物線與直線軸)的交點(diǎn)的橫坐標(biāo);也可以看成是拋物線與直線________的交點(diǎn)的橫坐標(biāo);也可以看成是拋物線________與直線的交點(diǎn)的橫坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別是BC邊,CD邊的中點(diǎn),AE、AF分別交BD于點(diǎn)G,H,設(shè)△AGH的面積為S1,平行四邊形ABCD的面積為S2,則S1:S2的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,直徑BD交AC于E,過O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.

(1)求證:OFDE=OE2OH;

(2)若⊙O的半徑為12,且OE:OF:OD=2:3:6,求陰影部分的面積.(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案