【題目】如圖,四邊形ABCD中,對角線AC與BD相交于O,在①AB∥CD;②AO=CO;③AD=BC中任意選取兩個(gè)作為條件,“四邊形ABCD是平行四邊形”為結(jié)論構(gòu)成命題。
(1)以①②作為條件構(gòu)成的命題是真命題嗎?若是,請證明;若不是,請舉出反例;
(2)寫出按題意構(gòu)成的所有命題中的假命題,并舉出反例加以說明.(命題請寫成“如果…,那么….”的形式)
【答案】見解析
【解析】
(1)根據(jù)平行得出全等三角形,即可求出OB=OD,根據(jù)平行四邊形的判定推出即可;(2)根據(jù)等腰梯形和平行四邊形的判定判斷即可.
(1)以①②作為條件構(gòu)成的命題是真命題;
證明:如圖,
∵AB∥CD,
∴∠OAB=∠OCD,
在△AOB和△COD中,
∴△AOB≌△COD(ASA),
∴OB=OD,
∴四邊形ABCD是平行四邊形。
(2)根據(jù)①③作為條件構(gòu)成的命題是假命題,即如果有一組對邊平行,另一組對邊相等,那么四邊形是平行四邊形,如等腰梯形符合,但不是平行四邊形;如圖,
根據(jù)②③作為條件構(gòu)成的命題是假命題,即如果一個(gè)四邊形ABCD的對角線交于O,且OA=OC,AD=BC,那么這個(gè)四邊形是平行四邊形,如圖,
根據(jù)已知不能推出OB=OD或AD∥BC或AB=DC,即四邊形不是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的函數(shù)表達(dá)式為y=﹣2x+2,且與x軸交于點(diǎn)A,直線l2經(jīng)過點(diǎn)B(5,0)且與l1交于點(diǎn)C,已知點(diǎn)C的橫坐標(biāo)是2.
(1)求點(diǎn)A和點(diǎn)C的坐標(biāo);
(2)若在直線l2上存在異于點(diǎn)C的另一點(diǎn)M,使得△ABM與△ABC的面積相等,試求點(diǎn)M的坐標(biāo).
(3)在y軸上求點(diǎn)P的坐標(biāo),使得PA+PC最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班有學(xué)生55人,其中男生與女生的人數(shù)之比為6:5.
(1)求出該班男生與女生的人數(shù);
(2)學(xué)校要從該班選出20人參加學(xué)校的合唱團(tuán),要求:①男生人數(shù)不少于7人;②女生人數(shù)超過男生人數(shù)2人以上.請問男、女生人數(shù)有幾種選擇方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)樓房附近有一個(gè)斜坡,小張發(fā)現(xiàn)樓房在水平地面與斜坡處形成的投影中,在斜坡上的影子長CD=6m,坡角到樓房的距離CB=8m.在D點(diǎn)處觀察點(diǎn)A的仰角為54°,已知坡角為30°,你能求出樓房AB的高度嗎?(tan54°≈1.38,結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在開展 “校園獻(xiàn)愛心”活動(dòng)中,準(zhǔn)備向南部山區(qū)學(xué)校捐贈(zèng)男、女兩種款式的書包.已知男款書包的單價(jià)50元/個(gè),女款書包的單價(jià)70元/個(gè).
(1)原計(jì)劃募捐3400元,購買兩種款式的書包共60個(gè),那么這兩種款式的書包各買多少個(gè)?
(2)在捐款活動(dòng)中,由于學(xué)生捐款的積極性高漲,實(shí)際共捐款4800元,如果至少購買兩種款式的書包共80個(gè),那么女款書包最多能買多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列結(jié)論正確的個(gè)數(shù)是( ) ①m+n>0;②m﹣n>0;③mn<0;④|m﹣n|=m﹣n.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,BE平分∠ABC,CD平分∠ACB,則下圖中共有幾對全等三角形( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD和正方形BEFG平放在一起.
(1)若兩正方形的面積分別是16和9,直接寫出邊AE的長為 .
(2)①設(shè)正方形ABCD的邊長為a,正方形BEFG的邊長為b,求圖中陰影部分的面積(用含a和b的代數(shù)式表示)
②在①的條件下,如果a+b=10,ab=16,求陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com